首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The constitutive model for the unusual asymmetric hardening behavior of magnesium alloy sheet presented in a companion paper (Lee, M.G., Wagoner, R.H., Lee, J.K., Chung, K., Kim, H.Y., 2008. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheet, Int. J. Plasticity 24(4), 545–582) was applied to the springback prediction in sheet metal forming. The implicit finite element program ABAQUS was utilized to implement the developed constitutive equations via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet (Numisheet ’2002 Benchmark Problem, 2002. In: Yang, D.Y., Oh, S.I., Huh, H., Kim, Y.H. (Eds.), Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju, Korea) and 2D draw bend test. With the specially designed draw bend test the direct restraining force and long drawn distance were attainable, thus the measurement of the springback could be made with improved accuracy comparable with conventional U channel draw bend test. Besides the developed constitutive models, other models based on isotropic constitutive equations and the Chaboche type kinematic hardening model were also considered. Comparisons were made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability, which was also supported by the simple bending analysis adopting asymmetric stress–strain response.  相似文献   

2.
3.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

4.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

5.
The present paper discusses some aspects in the numerical simulation of Taylor impact tests. A phenomenological internal variable theory is presented and restricted by the second law of thermodynamics. The constitutive model consists of a thermo-hyperelastic equation for the stresses and an evolution equation for the plastic internal variable. Specific thermo-plastic constitutive functions are proposed and corresponding material parameters are identified. Taylor impact tests are numerically simulated using the explicit finite element program LS-DYNA augmented by an user-defined material subroutine and the effect of variation of selected model parameters is discussed. Numerical results allow new interpretations of experimental observations and test data and gives advice on identification of material parameters in rate-dependent inelastic constitutive models.  相似文献   

6.
Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.  相似文献   

7.
In this paper we introduce stochastic methods to describe the influence of scattering test data on the identification of material parameters. We employ the viscoplastic constitutive model of Chan, Bodner, and Lindholm in its uniaxial form. The available test data result from three types of experiments performed at 600 °C on AINSI SS316 stainless steel, namely creep tests, constant strain rate tension tests with intermediate relaxation, and cyclic tension–compression tests. Each test has been performed with 12 specimens at different strain rates and stress rates respectively. However, for a serious statistical evaluation a larger number of experiments is required. In order to increase the number of tests we introduce stochastic simulations based on time series analysis which generate artificial data with the same stochastic behaviour as the experimental data. The method of stochastic simulation presents a widely accepted technique in engineering which does not add complexity to the process of parameter identification, but allows an investigation of the confidence in the fits of the material parameters. To keep the computation time for the identification of the material parameters as low as possible, very efficient numerical methods have to be implemented. The methods applied here for integration and nonlinear optimization are briefly introduced. The optimization strategy contains stochastic elements. Furthermore, we apply the method of statistical design of experiments to derive which combination of tests yields the most important information for an effective identification of material parameters.  相似文献   

8.
This paper deals with the identification of elasto-plastic constitutive parameters from deformation fields measured over the surface of thin flat specimens with the grid method. The approach for recovering the constitutive parameters is the virtual fields method. A dedicated algorithm is used for deriving the distribution of the 2D stress components from the measured deformation fields. A state of plane stress is assumed. Guesses of the constitutive parameters are input in the algorithm and updated until the stresses satisfy the principle of virtual work in the least squares sense. The advantage of this approach is that it can handle very heterogeneous plastic flows and it is much faster than classical finite element model updating approaches. An experimental application is provided to demonstrate it. Six mild steel double-notched specimens have been tested in a configuration combining tension and in-plane bending. The identified parameters are in good agreement with their reference counterparts. Stress fields are eventually reconstructed across the specimen all along the test for analyzing the evolution of the plastic flow.  相似文献   

9.
The plastic response of materials during reverse loading has practical consequences for common sheet forming operations in terms of loads, localization behavior, and springback. However, it is difficult to measure the reverse loading (Bauschinger effect) in sheet materials because of their propensity to buckle. A simple reverse-bend test was constructed and used to investigate the cyclic loading of three automotive body alloys. The results showed that consideration of the Bauschinger effect is essential to obtaining agreement with such results. An inverse procedure was used to determine anisotropic hardening law parameters. Laws obtained in this way were compared with ones generated by more sensitive tension-compression tests appearing in the literature for the same alloys. The two laws were significantly different, but both produced accurate simulations of reverse-bend test load–displacement curves. Several artificial material models were then constructed to simulate the reverse-bend test and thus to probe its sensitivity to material constitutive equation details. For materials whose reverse-loading response varies with the level of prestrain, as is the case for each of the three alloys tested, a wide range of constitutive response is capable of producing identical reverse-bending behavior. The results show that inverse procedures applied to the reverse-bend test do not provide unique results, and thus the usefulness of the reverse-bend test for such investigations is limited.  相似文献   

10.
光测实验技术在现代力学研究中得到了广泛的应用。对于材料力学参数如杨氏模量和泊松比的测量,可利用典型加载试验如拉伸试验、弯曲试验并结合光测方法(如云纹和数字图像相关技术)得到位移值,利用载荷信息和应变场信息通过计算获得相关的力学参数。本文利用虚位移场方法测量石墨材料的力学参数。结合石墨材料的三点弯曲实验,由数字图像相关法测量得到试件表面的非均匀变形场。通过选择两组不同的虚位移场,可以反算出材料的力学参数:杨氏模量和泊松比。结果表明这种方法可以有效测量石墨材料的弹性参数。该方法可望在材料力学行为检测中得到推广应用。  相似文献   

11.
This paper models the cyclic stress softening of an elastomer in compression. After the initial compression the material is described as being transversely isotropic. We derive non-linear transversely isotropic constitutive equations for the elastic response, stress relaxation, residual strain, and creep of residual strain in order to model accurately the inelastic features associated with cyclic stress softening. These equations are combined with a transversely isotropic version of the Arruda–Boyce eight-chain model to develop a constitutive relation that is capable of accurately representing the Mullins effect during cyclic stress softening for a transversely isotropic, hyperelastic material, in particular a carbon-filled rubber vulcanizate. To establish the validity of the model we compare it with two test samples, one for filled vulcanized styrene–butadiene rubber and the other for filled vulcanized natural rubber. The model is found to fit this experimental data extremely well.  相似文献   

12.
In this study, deep drawing finite element (FE) simulations are compared with experimental results. The steel grade, the geometry and the parameters of the experimental deep drawing processes are detailed in this paper. Particular attention is paid to numerical models. The main part of the article is dedicated to a broad sensitivity study. The influence of several numerical parameters on the predicted punch force and earing profile is analysed. A quadratic [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London Ser. A 193, 281–297] constitutive law is compared with more sophisticated micro-macro constitutive laws. The sensitivity of these laws to the initial data characterizing material behaviour is presented. A significant influence of the FE type and the number of FE layers is noticed. Finally, it also appears that friction parameters (penalty coefficient and Coulomb friction coefficient) have a significant influence on numerical results. The low anisotropy of the steel sheet increases the influence of several numerical parameters. That influence would not be observed with a highly anisotropic steel.  相似文献   

13.
Numerical procedures to predict drawbead restraining forces (DBRF) were developed based on the semi-analytical (non-finite-element) hybrid membrane/bending method. The section forces were derived by equating the work to pull sheet material through the drawbead to the work required to bend and unbend the sheet along with frictional forces on drawbead radii. As a semi-analytical method, the new approach was especially useful to analyze the effects of various constitutive parameters with less computational cost. The present model could accommodate general non-quadratic anisotropic yield function and non-linear anisotropic hardening under the plane strain condition. Several numerical sensitivity analyses for examining the effects of process parameters and material properties including the Bauschinger effect and the shape of yield surface on DBRF were presented. Finally, the DBRFs of SPCC steel sheet passing a single circular drawbead were predicted and compared with the measurements.  相似文献   

14.
An experimental and numerical test programme was conducted to investigate damage-induced ductile fracture in notched tensile sheet specimens of an aluminum–magnesium alloy. An upper bound, damage-based constitutive model was employed to estimate the formability of the material over a range of stress states found in sheet metal forming. Stress- and strain-based nucleation models are evaluated to characterize damage initiation and fracture of the material. The ligament strain-to-failure, elongation-to-failure and load–displacement curves can be captured using either nucleation rule. The advantages of each nucleation model are discussed in relation to quantitative measurements of damage available in the literature. Stress-based nucleation provides a promising approach for characterizing the nucleation behaviour over a range of stress states compared to strain-based nucleation.  相似文献   

15.
This paper describes a combined fracture–plastic model for concrete. Tension is handled by a fracture model, based on the classical orthotropic smeared crack formulation and the crack band approach. It employs the Rankine failure criterion, exponential softening, and it can be used as a rotated or a fixed crack model. The plasticity model for concrete in compression is based on the Menétrey–Willam failure surface, the plastic volumetric strain as a hardening/softening parameter and a non-associated flow rule based on a nonlinear plastic potential function. Both models use a return-mapping algorithm for the integration of constitutive equations. Special attention is given to the development of an algorithm for the combination of the two models. The suggested combination algorithm is based on a recursive substitution, and it allows for the two models to be developed and formulated separately. The algorithm can handle cases when failure surfaces of both models are active, but also when physical changes such as crack closure occur. The model can be used to simulate concrete cracking, crushing under high confinement and crack closure due to crushing in other material directions. The model is integrated in a general finite element package ATENA and its performance is evaluated by comparisons with various experimental results from the literature.  相似文献   

16.
17.
本文提出利用静态位移信息对一种计及表面能的应变梯度理论本构参数进行识别的求解策略.基于Vardoulakis和Sulem的计及表面能的简单线性应变梯度理论,文献[13]给出了伯努力-欧拉梁弯曲问题的正演解析模型,本文将其反演归结为两个带有不等式约束的非线性规划问题.在此基础上,采用黄金分割一维搜索方法进行求解,给出了数值验证,讨论了信息误差对反演结果的影响.结果显示,这种方法可以用来对应变梯度理论本构参数进行识别,即使在体积和表面能常数非常小的情况下,仍然能够得到满意的结果.  相似文献   

18.
A combined necking and shear localization analysis is adopted to model the failures of two aluminum sheets, AA5754 and AA6111, under biaxial stretching conditions. The approach is based on the assumption that the reduction of thickness or the necking mode is modeled by a plane stress formulation and the final failure mode of shear localization is modeled by a generalized plane strain formulation. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for the potential surface curvature, material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Specifically, the necking/shear failure of the aluminum sheets is modeled under uniaxial tension, plane strain tension and equal biaxial tension. The results based on the mechanics model presented in this paper are in agreement with those based on the forming limit diagrams (FLDs) and tensile tests. When the necking mode is suppressed, the failure strains are also determined under plane strain conditions. These failure strains can be used as guidances for estimation of the surface failure strains on the stretching sides of the aluminum sheets under plane strain bending conditions. The estimated surface failure strains are higher than the failure strains of the forming limit diagrams under plane strain stretching conditions. The results are consistent with experimental observations where the surface failure strains of the aluminum sheets increase significantly on the stretching sides of the sheets under bending conditions. The results also indicate that when a considerable amount of necking is observed for a sheet metal under stretching conditions, the surface failure strains on the stretching sides of the sheet metal under bending conditions can be significantly higher.  相似文献   

19.
20.
In this paper, we deal with the mechanical behaviour of elastomeric sole shoes subjected to bending. First, a methodology for material parameter identification is described for a visco-hyperelastic constitutive law with discontinuous damage, modelling the Mullins effect. This constitutive law was implemented in the finite element software CODE-ASTER (Abbas and Baranger 2010). Then, numerical results of the bending behaviour of a simple geometric shoe sole model are compared to experimental measurements obtained with a stereoscopic vision system. Finally, an industrial application of dynamic bending sole shoe is presented and experimental results and simulated load history are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号