首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformations of Au(OH) 4 ? in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH 4 + (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH 4 + ] > ?2.0 (c Au = (1?10) × 10?4 mol/L, the monitoring time was about two weeks). When log [NH 4 + ] > 0, Au(NH3) 4 3+ dominates together with the amido form Au(NH3)3NH 2 2+ ; when log [NH 4 + ] < ?2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3) 4 3+ + OH is log $ K_{4 OH, NH_3 } The transformations of Au(OH)4 in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH4+ (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH4+] > −2.0 (c Au = (1−10) × 10−4 mol/L, the monitoring time was about two weeks). When log [NH4+] > 0, Au(NH3)43+ dominates together with the amido form Au(NH3)3NH22+; when log [NH4+] < −2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3)43+ + OH is log = −4.2 ± 0.3. This constant was used together with other constants, taking into account possible ligand effects, to estimate the formation constant of Au(NH3)43+: logβ4 = 47 ± 1, E 3/0 = 0.64 ± 0.02 V, log = −8.5 ± 1 (substitution of 4 NH3 for 4 OH in Au(OH)4), log = 17.5 ± 1 (substitution of 4NH3 for 4Cl in AuCl4). Original Russian Text ? I.V. Mironov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 711–715.  相似文献   

2.
An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2) 6 3+ and SO2/HSO 3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (K d = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO 3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (k iso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition  相似文献   

3.
The specific ion interaction theory (SIT) was applied to the first hydrolysis constants of Eu(III) and solubility product of Eu(OH)3 in aqueous 2, 3 and 4 mol⋅dm−3 NaClO4 at 303.0 K, under CO2-free conditions. Diagrams of pEuaq versus pCH were constructed from solubilities obtained by a radiometric method, the solubility product log10 Ksp, Eu(OH)3I {Eu(OH)3(s) Euaq3++ 3OHaq } values were calculated from these diagrams and the results obtained are log10 Ksp,Eu(OH)3I = − 22.65 ± 0.29, −23.32 ± 0.33 and −23.70 ± 0.35 for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. First hydrolysis constants {Euaq3++H2O Eu(OH)(aq)2++H+ } were also determined in these media by pH titration and the values found are log10βEu,HI = − 8.19 ± 0.15, −7.90 ± 0.7 and −7.61 ± 0.01 for ionic strengths of 2, 3, and 4 mol⋅dm−3 NaClO4, respectively. Total solubilities were estimated taking into account the formation of both Eu3+ and Eu(OH)2+ (7.7 < pCH < 9) and the values found are: 1.4 × 10−6 mol⋅dm−3, 1.2 × 10−6 mol⋅dm−3 and 1.3 × 10−6 mol⋅dm−3, for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. The limiting values at zero ionic strength were extrapolated by means of the SIT from the experimental results of the present research together with some other published values. The results obtained are log10 Ksp, Eu(OH)3o = − 23.94 ± 0.51 (1.96 SD) and log10βEu,H0 = − 7.49 ± 0.15 (1.96 SD).  相似文献   

4.
The kinetics of base hydrolysis ofcis-[RuCl2(en)2]+ (en=1,2-diaminoethane),cis-α-[RuCl2(trien)]+ andcis-α-[RuCl(OH)(trien)]2+ (trien=1,8-diamino-3,6-diazaoctane) have been studied. All the reactions are fast and obey the second-order rate law,-d[complex]/dt=k[OH][complex], with complete retention of configuration. A conjugate base mechanism involving a squarepyramidal intermediate is suggested. The Arrhenius parameters and rate constants found are respectively: ΔH 14.2±0.5, 7.2±0.1, 10.9±0.1 M cal mol−1; ΔS 1.3, 29, 22 cal deg−1 mol; log A 13.5, 6.9, 8.6 kOH 533 (27.2°C) 14.5 (24.4° C) 1.65 (25°C) M−1s−1.  相似文献   

5.
Complex formation constants were determined potentiometrically (by a ISE-H+, glass electrode) in the systems, M2+ – Lz – H+ [M2+ = (C2H5)2Sn2+, Lz = malonate, glycinate and ethylenediamine] at t = 25 C and 0.1 mol-L−1I/ ≤ 1 mol-L−1 in NaClaq (0.1 mol-L−1I ≤ 0.75 mol-L−1 for the ethylenediamine system). Thermodynamic values of formation constants, at infinite dilution, are [± 95% confidence interval, Tβpqr refer to the equilibrium, pM2+ + qLz + rH+ = MpLqHr(2+z+r)]: for malonate, log10 Tβ110 = (5.47 ± 0.10); for glycinate, log10 Tβ110 = (9.54 ± 0.08), log10 Tβ111 = (12.97 ± 0.10); and for ethylenediamine, log10 Tβ110 = (10.47 ± 0.10), log10 Tβ120 = (16.17 ± 0.12) and log10 Tβ111 = (15.46 ± 0.10). The dependence on ionic strength of the formation constants was modeled by a simple Debye–Hückel type equation and by the SIT approach. By analyzing the stability of the species in the three different systems we found a simple additivity rule that can be expressed by the relationship: log10 K = 6.46 nN + 3.96 nO − 0.60 (nN2+ nO2), with a mean deviation, ε(log10 K) = 0.15 (K = equilibrium constant for the interaction of the organometal cation with the unprotonated or protonated ligand, nN = number of amino groups and nO = number of carboxylic groups of the ligand(s) involved in the formation reaction of complex species).  相似文献   

6.
The interaction of (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane (LH2) with iron(III) in acidic medium resulted in the formation of a mononuclear complex, Fe(LH3)4+ which further yielded, [Fe(LH2)]3+, [Fe(LH)]2+, and [FeL]+ due to protolytic equilibria. The formation of [Fe(LH3)]4+ was investigated under varying [H+]T (0.01–0.10 mol dm−3) and [Fe3+]T (1.00 × 10−3–1.70 × 10−2, [L]T = 1.0 × 10−4 mol dm−3) (I = 0.3 mol dm−3, 10% MeOH + H2O, 25.0 °C). The reaction was reversible and displayed monophasic kinetics; the dominant path involved Fe(OH)(OH2) 5 2+ and LH 4 2+ . The mechanism is essentially a dissociative interchange (I d) and the dissociation of the aqua ligand from the encounter complex, [Fe(OH2)5OH2+, H4L2+] is rate limiting. The ligand binds iron(III) in a bidentate ([Fe(H3L)]4+), tetradentate ([Fe(H2L)]3+), pentadentate ([Fe(HL)]2+) and hexadentate fashion ([FeL]+) under varying pH conditions. Iron(III) promoted deprotonation of the amide and phenol moieties and chelation driven deprotonation of the sec-NH 2 + of the trien spacer unit are in tune with the above proposition. The mixed ligand complexes, [FeIII(LH)(X)] (X = N 3 , NCS, ACO) are also reversibly formed in solution thus indicating that there is a replaceable aqua ligand in the complex conforming to its octahedral coordination, [Fe(LH)(OH2)]2+, the bound ligand is protonated at the sec-NH site. Despite the multidentate nature of the ligand the FeIII complexes are prone to reduction by sulfur(IV) and ascorbic acid. The redox reactions of different iron(III) species, FeIII(LHi) which involved ternary complex formation with the reductants have been investigated kinetically as a function of pH, [SIV]T and [ascorbic acid]T. The substantial pK perturbation of the bound ascorbate in [Fe(LH)(HAsc/Asc)]+/0 (ΔpK {[Fe(LH)(HAsc)] − HAsc − } > 6) is considered to be compelling evidence for chelation of HAsc/Asc2− leading to hepta coordination of iron(III) in the ascorbate complexes. A novel binuclear complex with composition, [FeIII 2C20N4H35O11 (NO3)] has been synthesized and characterized by i.r., u.v.–vis, e.s.r., e.s.i.-Mass, 57Fe Mossbauer spectroscopy and magnetic moment measurements. The complex was isolated as a mixture of two forms C 1 and C 2 with 75.3 and 24.7%, respectively as computed from Mossbauer data. The isomer shift (δ) (quadrupole splitting, ΔE Q) are 0.32 mm s−1 (0.75 mm s−1) and 0.19 mm s−1 (0.68 mm s−1) for C 1 and C 2, respectively. The variable temperature magnetic moment measurements (10–300 K) of the sample showed that C 1 is an oxo dimer exhibiting antiferromagnetic interaction between the iron(III) atoms (S 1 = S 2 = 5/2, J = − 120 cm−1) while the dimer C 2 is a high spin species (S 1 = S 2 = 5/2) and exhibits normal paramagnetism obeying the Curie law. The cyclic voltametry response of the sample (DMF, [TEAP] = 0.1 mol dm−3) displayed quasi-reversible responses at − 0.577 V and − 1.451 V (versus SCE). This is in tune with the fact that the C 2 species reverts rapidly in solution to the relatively more stable oxo-bridged dimer (C 1) which is reduced in two sequential steps: C1 + e → [FeL]+ + FeII; [FeL]+ + e → FeIIL, the high labilility of the FeII complex is attributed to the irreversibility. The X-band e.s.r. spectrum of the polycrystalline sample at room temperature displayed a weak (unresolved) band at g = 4.2 and a strong band at g = 2.0 with hyperfine splitting due to the coordinated nitrogen (I = 1). At 77 K the band at g = 4.2 is intensified while that at g = 2 is broadened to the extent of near disappearance in agreement with the presence of the exchange coupled iron(III) centres. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. An erratum to this article is available at .  相似文献   

7.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

8.
A protocol has been developed for the reliable titration of aqueous sulfite solutions which minimizes photodecomposition effects. This procedure has been used to measure the protonation constants of the sulfite ion in aqueous solution by glass electrode potentiometry at 25.0‡C and ionic strengths (I) from 0.1 to 5.0M in NaCI media and atI = 1.0M in KC1 and Me4NCl media. These measurements provided evidence of weak but significant ionpairing between SO2/3 -and Na+ with a formation constant of logK Na = 0.431 in 1.0M Me4NCl. This was in very good agreement with the value logK Na = 0.410 measured directly by Na+ ion-selective electrode potentiometry. Evidence is also presented for an extremely weak association of K+ and SO 2 3 -with logK k = 0.22 in 1.0M Me4NCl.  相似文献   

9.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

10.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium 2Li+(aq)+SrL2 2+(nb) 2LiL+(nb)+Sr2+(aq) taking place in the two-phase water-nitrobenzene system (L=15-crown-5; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logK ex (2Li+;SrL2 2+)=−3.7. Further, the stability constant of the 15-crown-5—lithium complex in nitrobenzene saturated with water was calculated: log βnh(LiL+)=7.0.  相似文献   

11.
A new complex [Pb(Crypt-222)(H2O)2]+ · 2(iso-PrO)2P(S)NC(S)Ph (I) was prepared and studied by X-ray diffraction: space group C2/c, a = 16.170 ?, b = 10.405 ?, c = 34.116 ?, β = 103.32°, Z = 4. The monoclinic structure of I was solved by direct methods and refined by full-matrix least-squares calculation in the anisotropic approximation to R = 0.098 for 6414 independent reflections (CAD4 automated diffractometer, λMoK α). In structure I, the host-guest [Pb(Crypt-222)(H2O)2]+ cation is located on a twofold crystallographic axis. The Pb2+ cation is coordinated by all eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of water molecules. The Pb2+ coordination polyhedron (CN = 10) is a highly distorted two-base-centered dicapped trigonal prism. The crystal structure of I contains one independent thiophosphoramidate anion with deprotonated nitrogen. In crystal I, the complex cation is connected to two thiophosphoramidate anions by ion-ion hydrogen bonds, O(w)-H...S.  相似文献   

12.
The oxidation of [CoII(nta)(ox)(H2O)2]3− and [CoII(nta)(ph)(H2O)2]3− (nta = nitrilotriacetate, ox = oxalic acid and ph = phthalic acid) by periodate have been studied kinetically in aqueous solution over 20–40 °C and a variety of pH ranges. The rate of oxidation of [CoII(nta)(ox)(H2O)2]3− by periodate, obeys the following equation: d[CoIII]/dt = [CoII(nta)(ox)(H2O)23−][H5IO6] {k 4 K 5 + (k 5 K 6 K 2/[H+]} while the reaction of [CoII(nta)(ph)(H2O)2]3− with periodate in aqueous acidic medium obeys the following rate law: d[CoIII]/dt = k 6 K 8[CoII]T [IVII]T/{1 + [H+]/K 7 + K 8[IVII] T }. Initial cobalt(III) products were formed and slowly converted to final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters have been calculated. A common mechanism for the oxidation of ternary nitrilotriacetatocobalt(II) complexes by periodate is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.  相似文献   

13.
The azo coupling reaction of N-(2-carboxyethyl)anthranilic acid and N,N,N′,N′-tetrabis(2-carboxyethyl)-1,3-phenylenediamine with diazosulfanilic acid yielded the complexones sodium 4-N-(2-carboxyethyl)amino-5-carboxyazobenzene-4′-sulfonate (I) and 2,4-N,N,N′,N′-tetrabis(2-carboxyethyl)diaminoazobenzene-4′-sulfonic acid (II), respectively. The acidity constants of I and II (20°C, μ = 0.1M KCl) were determined to be as follows: for I, pK 00 = 1.29 ± 0.13, pK 0 = 2.92 ± 0.07, pK 1 = 3.92 ± 0.05, pK 2 = 5.16 ± 0.03; for II, pK 00 = 2.35 ± 0.06, pK 0 = 2.81 ± 0.09, pK 1 = 3.21 ± 0.11, pK 2 = 3.81 ± 0.09, pK 3 = 4.34 ± 0.04, pK 4 = 5.03 ± 0.06, pK 5 = 6.67 ± 0.07. The electronic absorption spectra of I and II were measured, and acid-base equilibrium scheme for I and II in aqueous solutions were suggested. The complexation constants of I and II with copper(II) ions were determined to be logK CuQI= 5.47 ± 0.06 and logK CuQII= 5.72 ± 0.13 (20°C, μ = 0.1 M KCl).  相似文献   

14.
The effect of pH and neutral electrolyte on the interaction between humic acid/humate and γ-AlOOH (boehmite) was investigated. The quantitative characterization of surface charging for both partners was performed by means of potentiometric acid–base titration. The intrinsic equilibrium constants for surface charge formation were logK a,1 int=6.7±0.2 and logK a,2 int = 10.6±0.2 and the point of zero charge was 8.7±0.1 for aluminium oxide. The pH-dependent solubility and the speciation of dissolved aluminium was calculated (MINTEQA2). The fitted (FITEQL) pK values for dissociation of acidic groups of humic acid were pK 1 = 3.7±0.1 and pK 2 = 6.6±0.1 and the total acidity was 4.56 mmol g−1. The pH range for the adsorption study was limited to between pH 5 and 10, where the amount of the aluminium species in the aqueous phase is negligible (less than 10−5 mol dm−3) and the complicating side equilibria can be neglected. Adsorption isotherms were determined at pH ∼ 5.5, ∼8.5 and ∼9.5, where the surface of adsorbent is positive, neutral and negative, respectively, and at 0.001, 0.1, 0.25 and 0.50 mol dm−3 NaNO3. The isotherms are of the Langmuir type, except that measured at pH ∼ 5.5 in the presence of 0.25 and 0.5 mol dm−3 salt. The interaction between humic acid/humate and aluminium oxide is mainly a ligand-exchange reaction with humic macroions with changing conformation under the influence of the charged interface. With increasing ionic strength the surface complexation takes place with more and more compressed humic macroions. The contribution of Coulombic interaction of oppositely charged partners is significant at acidic pH. We suppose heterocoagulation of humic acid and aluminium oxide particles at pH ∼ 5.5 and higher salt content to explain the unusual increase in the apparent amount of humic acid adsorbed. Received: 20 July 1999 /Accepted in revised form: 20 October 1999  相似文献   

15.
The dinuclear gold(III) complex, [Au2(HL)(L)2](ClO4)3(OH) (I) (HL = 1,3-diaminopropane), with two amide bridges has been synthesized for the first time. According to the X-ray diffraction data, the crystal structure of complex I consists of the complex cations [Au2(HL)(L)2]4+ and anions ClO4 and OH. The coordination sites AuN4 are insignificantly distorted squares. In the four-membered ring Au2N2, the gold atoms are bound by the bridging nitrogen atoms of the deprotonated primary amine.  相似文献   

16.
The effect of pH and associated ionic strength on the primary yields in the radiolysis of pressurised water has been assessed by diffusion-kinetic calculations for temperatures in the range 100–300°C. Account has been taken for ionic strength I up to 0.1 mol kg−1, assuming that the counter ions of H+ in acid solutions and of OH in base solutions have unit charge. In acid solutions, the H+ ions react with e aq. The decrease in G(e aq) and the increase in G(H) with decreasing pH becomes substantial for [H+] ≥ 1 × 10−4 m, but the primary yields of oxidising species are almost constant. In alkaline solutions, the OH anions affect the spur chemistry of radiation-generated protons and hydroxyl radicals for [OH] ≥ 1 × 10−4 m. The scavenging of H atoms and hydrogen peroxide becomes significant for [OH] ≥ 1 × 10−2 m. The total yields G(OH) + G(O) and G(H2O2) + G(HO2 ) are independent of base concentration below 0.01 m. In more alkaline solutions, G(OH) + G(O) increases, whereas G(H2O2) + G(HO2 ) decreases with increasing [OH]. Calculations showed the substantial yield of the reaction O + e aq in 0.1 m base solution. Spur chemistry in alkaline hydrogenated water is not affected by the presence of H2 if less than 0.001 m of hydrogen is added.  相似文献   

17.
The kinetics of oxidation of phenyldiethanolamine (PEA) by a silver(III) complex anion, [Ag(HIO6)2]5−, has been studied in an aqueous alkaline medium by conventional spectrophotometry. The main oxidation product of PEA has been identified as formaldehyde. In the temperature range 20.0–40.0 °C , through analyzing influences of [OH] and [IO 4 ]tot on the reaction, it is pseudo-first-order in Ag(III) disappearance with a rate expression: k obsd = (k 1 + k 2[OH]) K 1 K 2[PEA]/{f([OH])[IO 4 ]tot + K 1 + K 1 K 2 [PEA]}, where k 1 = (0.61 ± 0.02) × 10−2 s−1, k2 = (0.049 ± 0.002) M−1 s−1 at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k 1 and k 2 have also been derived. A reaction mechanism is proposed involving two pre-equilibria, leading to formation of an Ag(III)-periodato-PEA ternary complex. The ternary complex undergoes a two-electron transfer from the coordination PEA to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion.  相似文献   

18.
The kinetics of nucleophilic substitution of pyridine in bis-cationic [Pt(L)(py)]2+ complexes (L=SNS, NNN, NSN) [SNS=bis(methylthiomethyl)pyridine, NNN=bis(2-pyridylmethyl)amine, NSN=bis(2-pyridylmethyl)sulphide] by a series of nucleophiles (Cl, Br, I, N3, (C2H5)2S, NH3, thiourea (tu), NO2, C5H10NH, SeCN, SCN, CN when L=SNS; Cl, Br, I, N3, (C2H5)2S, SCN, NH3, NO2 when L=NNN; Br, N3, NO2, NH3, C5H10NH when L=NSN) have been measured in MeOH at 25 °C, μ =0.1 mol dm−3 (LiClO4 or LiCF3SO3). The logarithms of the second-order rate constants calculated at μ=0, log k° 2, do not follow the dependence upon the n° Pt scale. In particular, the reactivity of the biphilic reagents tu, SeCN, SCN and, to a lesser extent, NO 2, towards these doubly charged substrates is largely lower than expected on the basis of the n° Ptscale. There are good linear relationships between logk° 2 for the bis-cationic substrate [Pt(SNS)(py)]2+, chosen as the standard, and log k° 2 for the same reactions with [Pt(NNN)(py)]2+, [Pt(NSN)(py)]2+ and other double charged complexes previously studied. A new wide nucleophilicity scale based on [Pt(SNS)(py)]2+, that is appropriate to all the bis-cationic substrates, is here proposed  相似文献   

19.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

20.
From extraction experiments with22Na as a tracer, the extraction constant corresponding to the equilibrium Ba2+(aq)+2NaL+(nb)⇄ ⇄BaL2 2+(nb)+2Na+(aq) taking place in the two-phase water-nitrobenzene system (L=15-crown-5; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logK ex (Ba2+,2NaL+)=3.3±0.1. Further, the stability constant of the complex BaL2 2+ in nitrobenzene saturated with water was calculated: log βnh(BaL 2 2+ )=16.4±0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号