首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Anesthetic-induced CNS depression is thought to involve reduction of glutamate release from nerve terminals. Recent studies suggest that isoflurane reduces glutamate release by block of Na channels. To further investigate this question we examined the actions of isoflurane, TTX, extracellular Ca2+, CNQX and stimulus voltage (stim) on glutamate-mediated transmission at hippocampal excitatory synapses. EPSPs were recorded from CA1 neurons in rat hippocampal brain slices in response to Schaffer-collateral fiber stimulation.  相似文献   

2.

Background  

Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.  相似文献   

3.

Background  

The infantile onset form of Neuronal Ceroid Lipofuscinoses (INCL) is the earliest and most severe form of NCL, with neurological symptoms that reflect massive neurodegeneration in the CNS and retina. INCL is due to recessively inherited mutations at the CLN1 locus. This locus encodes the evolutionarily conserved enzyme palmitoyl-protein thioesterase 1 (PPT1), indicating an essential role for protein palmitoylation in normal neuronal function.  相似文献   

4.

Background  

Gangliosides, sialic acid-containing glycosphingolipids exist in mammalian cell membranes particularly neuronal membranes. The trisialoganglioside (GT1b) is one of the major brain gangliosides and acts as an endogenous regulator in the brain. We previously showed GT1b induces mesencephalic dopaminergic (DA) neuronal death, both in vivo and in vitro. We further investigate the underlying mechanisms of GT1b neurotoxicity.  相似文献   

5.

Background  

Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI). Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX) -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2.  相似文献   

6.

Background  

The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes.  相似文献   

7.

Background  

Stem cells or immune cells targeting the central nervous system (CNS) bear significant promises for patients affected by CNS disorders. Brain or spinal cord delivery of therapeutic cells is limited by the blood-brain barrier (BBB) which remains one of the recognized rate-limiting steps. Osmotic BBB disruption (BBBD) has been shown to improve small molecule chemotherapy for brain tumors, but successful delivery of cells in conjunction with BBBD has never been reported.  相似文献   

8.

Background  

The kelch repeat protein muskelin mediates cytoskeletal responses to the extracellular matrix protein thrombospondin 1, (TSP1), that is known to promote synaptogenesis in the central nervous system (CNS). Muskelin displays intracellular localization and affects cytoskeletal organization in adherent cells. Muskelin is expressed in adult brain and has been reported to bind the Cdk5 activator p39, which also facilitates the formation of functional synapses. Since little is known about muskelin in neuronal tissues, we here analysed the tissue distribution of muskelin in rodent brain and analysed its subcellular localization using cultured neurons from multiple life stages.  相似文献   

9.

Background  

Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP), HFE, neogenin (NEO1), transferrin receptor 1 (TFRC), transferrin receptor 2 (TFR2), and hemojuvelin (HFE2) in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines.  相似文献   

10.

Background  

During angiogenesis in the developing central nervous system (CNS), endothelial cells (EC) detach from blood vessels growing on the brain surface, and migrate into the expanding brain parenchyma. Brain angiogenesis is regulated by growth factors and extracellular matrix (ECM) proteins secreted by cells of the developing CNS. In addition, recent evidence suggests that EC play an important role in establishing the neural stem cell (NSC) niche. Therefore, two-way communication between EC and neural cells is of fundamental importance in the developing CNS. To study the interactions between brain EC and neural cells of the developing CNS, a novel three-dimensional (3-D) murine co-culture system was developed. Fluorescent-labelled brain EC were seeded onto neurospheres; floating cellular aggregates that contain NSC/neural precursor cells (NPC) and smaller numbers of differentiated cells. Using this system, brain EC attachment, survival and migration into neurospheres was evaluated and the role of integrins in mediating the early adhesive events addressed.  相似文献   

11.

Background  

JNCL is a recessively inherited, childhood-onset neurodegenerative disease most-commonly caused by a ~1 kb CLN3 mutation. The resulting loss of battenin activity leads to deposition of mitochondrial ATP synthase, subunit c and a specific loss of CNS neurons. We previously generated Cln3 Δex7/8 knock-in mice, which replicate the common JNCL mutation, express mutant battenin and display JNCL-like pathology.  相似文献   

12.

Background  

Donepezil improves cognitive functions in AD patients. Effects on the brain metabolites N-acetyl-L-aspartate, choline and myo-inositol levels have been reported in clinical studies using this drug. The APP/PS1 mouse coexpresses the mutated forms of human β-amyloid precursor protein (APP) and mutated human presenilin 1 (PS1). Consequently, the APP/PS1 mouse model reflects important features of the neurochemical profile in humans. In vivo magnetic resonance spectroscopy (1H-MRS) was performed in fronto-parietal cortex and hippocampus (ctx/hipp) and in striatum (str). Metabolites were quantified using the LCModel and the final analysis was done using multivariate data analysis. The aim of this study was to investigate if multivariate data analysis could detect changes in the pattern of the metabolic profile after donepezil treatment.  相似文献   

13.

Background  

The Adhesion G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of Adhesion GPCRs are still poorly studied orphans with unknown functions.  相似文献   

14.

Background  

Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1). This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C.  相似文献   

15.

Background  

ALPK1 (α-kinase 1) is a member of an unconventional alpha-kinase family, and its biological function remains largely unknown. Here we report the phenotypic characterization of one mutant line, in which the piggyBac (PB) transposon is inserted into the Alpk1 gene.  相似文献   

16.

Background  

Disabled-1 (Dab1) is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn.  相似文献   

17.

Background  

Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies.  相似文献   

18.
19.

Background  

Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS), could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA) receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the "downstream" effect of isolated excitotoxic perikaryal injury on central nervous system (CNS) axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号