首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
X_2Si=Sn:(X = H, Me, F, Cl, Br, Ph, Ar…) are new species of chemistry. The cycloaddition reaction of X_2Si=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X_2Si=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Cl_2Si=Sn: and ethylene were selected as model reactions in this paper.The mechanism of cycloaddition reaction between singlet Cl_2Si=Sn: and ethylene has been first investigated with the MP2/GENECP(C, H, Cl, Si in 6-311++G**; Sn in LanL2dz) method in this paper. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule presented is that the 5p unoccupied orbital of Sn in Cl_2Si=Sn: and the π orbital of ethylene forming a p→p donor-acceptor bond, resulting in the formation of an intermediate. Instability of the intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethylene form a p→p donor-acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in the intermediate shows sp~3 hybridization after transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X_2Si=Sn: and the symmetric π-bonded compounds. The study opens up a new research field for stannylene chemistry.  相似文献   

2.
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.  相似文献   

3.
The mechanism of photocycloaddition reaction between 6-azauracll and acetone was studied by using semiemptrical SCFMO AMI method. It was found that this reaction is not a concerted one. The calculated results are as follows:(1) A T1 state exciplex is on the T1 state energy surface; (2) T exciplex as a reactant will proceed along the energy surface of T1 state to form a diradical intermediate. The energy barrier of this reaction step is 63. 6 kJ/mol; (3) The T1 state diradical intermediate happens to be close in energy to the ground state intermediate with a similar geometry. Such a situation turns out to be very favorable for an intersystem crossing (jump from the T, state to the ground state) ; (4) The final product will be formed from the ground S0 state intermediate via an energy barrier 88. 2 kJ/mol.  相似文献   

4.
《结构化学》2020,39(9):1627-1632
X_2Ge=Sn:(X = H, Me, F, Cl, Br, Ph, Ar···) are new species of chemistry. The cycloaddition reaction of X_2Ge=Sn: is a new study field of stannylene chemistry. To explore the rules of cycloaddition reaction between X_2Ge=Sn: and the symmetric p-bonded compounds, the cycloaddition reactions of Me_2Ge=Sn: and ethylene were selected as model reactions in this paper, and the mechanism was investigated for the first time here using the MP2 theory together with the 6-311++G** basis set for C, H and Ge atoms and the LanL2dzbasis set for Sn atoms. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction rule present is that the 5p unoccupied orbital of Sn in Me_2Ge=Sn: and the π orbital of ethylene form a p → p donor–acceptor bond, resulting in an intermediate which, due to its instability, makes itself isomerize into a four-membered Ge-heterocyclic ring stannylene. Because the 5p unoccupied orbital of Sn atom in the four-membered Ge-heterocyclic ring stannylene and the π orbital of ethylene form a p → p donor-acceptor bond, the four-membered Ge-heterocyclic ring stannylene further combines with ethylene to get another intermediate. Because the Sn atom in this intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a Ge-heterocyclic spiro-Sn-heterocyclic ring compound. The research result indicates the laws of cycloaddition reaction between X_2Ge=Sn: and the symmetric π-bonded compounds. This study opens up a new research field for stannylene chemistry.  相似文献   

5.
The "Extended Kinetic Isotope Method" (EKIM) is presented in this paper in detail. The EKIM is applied to the analysis of butene oxidative dehydrogenation reaction network over Bi-Mo-P, Sn-P-Li and ferrite catalysts, including reversible isomerization between the three n-butene isomers, selective oxidation of n-butenes to butadiene, and totaI oxidation of n-butenes and butadiene. The reaction orders of selective and total oxidation reactions, as well as the rate constants of the 13 step reactions, have been estimated. From the results obtained, it is suggested that the rate determining step in the selective oxidation of butenes over the Bi-Mo-P and Sn-P-Li catalysts should be the abstraction of first hydrogen to form allyl intermediate. However, over the ferrite catalyst, the second H-abstraction from allyl intermediate rather than the first one might be the rate determining step. Mechanisms of selective oxidation and isomcrization reactions over the three catalysts are also discussed.  相似文献   

6.
The mechanism of cycloaddition reaction between singlet silylene carbene and acetone has been investigated with CCSD(T)//MP2/6-31G method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. One consists of two steps: (1) the two reactants (R1, R2) firstly form a four-membered ring intermediate (INT4) through a barrier-free exothermic reaction of 585.9 kJ/mol; (2) Then intermediate (INT4) isomerizes to CH3-transfer product (P4.1) via a transition state (TS4.1) with energy barrier of 5.3 kJ/mol. The other is as follows: on the basis of intermediate (INT4) created between R1 and R2, intermediate (INT4) further reacts with acetone (R2) to form the intermediate (INT5) through a barrier-free exothermic reaction of 166.3 kJ/mol; Then, intermediate (INT5) isomerizes to a silicic bis-heterocyclic product (P5) via a transition state (TS5), for which the barrier is 54.9 kJ/mol. The presented rule of this reaction: the [2+2] cycloaddition effect between the π orbital of silylene carbene and the π orbital of π-bonded compounds leads to the formation of a four-membered ring intermediate (INT4); The unsaturated property of C atom from carbene in the four-membered ring intermediate (INT4) results in the generation of CH3-transfer product (P4.1) and silicic bis-heterocyclic compound (P5).  相似文献   

7.
A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylic acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the α-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.  相似文献   

8.
A phosphoryl enzyme intermediate was observed in the hydrolysis of FruP_2 catalyzed by snake muscleFruP_(2ase) based on the fact that the formation rate of F6P is faster than that of inorganic phosphatewhen the reaction mixture contains a phosphoryl acceptor other than water. A covalently bound phosphateon the enzyme was isolated from the reverse reaction. This intermediate may relate to the process of theforward catalytic reaction by the enzyme.  相似文献   

9.
The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazole compounds from carboxylic acids,amidines and hydrazines have been first investigated with the B3 LYP/6-311++G** method.According to the potential energy profile,it can be predicted that the course of the reaction consists of five reactions containing six elementary reactions.The α-imino-3-pyridine formic acid and acetamidine form first an intermediate product through a dehydration reaction; the intermediate product further combines with hydrogen ion to form a positive ion; the positive ion reacts with anisole hydrazine by a dehydration reaction to form another positive ion; then,followed by two isomerization reactions,the final reaction with the acetate ion(Ac-) produces the final product.The research results reveal the laws of synthesis reaction of 1,3,5-substituted-1,2,4-triazoles by the carboxylic acids,amidines,hydrazines and their derivatives on theoretical level.It provides the systemic theoretical basis for the synthesis,development and application of 1,3,5-substituted-1,2,4-triazole compounds.  相似文献   

10.
The nitrozation reaction of cyclohexane in one-step reaction to form ε-caprolactam has been studied using transition metal salt as catalysts in this work. The results indicated that the catalysts play an especially important role. This method is expected to be a novel way to synthesize other lactam by similar reaction. The possible mechanism was suggested.  相似文献   

11.
The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. As the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde form a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to give an intermediate. Because the Ge atom in intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product.  相似文献   

12.
In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane(OCM)over titanite pervoskite is developed.The method is based on a computational fluid dynamics(CFD)code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst(7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor.  相似文献   

13.
Summaryof main observation and conclusion Bacteriohopanepolyols are a group of triterpenoids that play important rolesin regulating bacterial cell membrane function.As an intermediate in bacteriohopanepolyol biosynthesis,adenosylhopane production is related to a putative Fe-S protein HpnH,but the exact role of this enzyme remains unsolved.Here we report characterization of HpnH as a novel radical S-adenosylmethionine(SAM)superfamily enzyme.In contrast to almost all the members in the superfamily,HpnH does not initiate the reaction by a hydrogen atom abstraction process.Instead,it catalyzes the adenosylation of hopene via a radical addition reaction to produce adenosylhopane,representing the second example of radical SAM-dependent adenosylation involved in natural product biosynthesis.  相似文献   

14.
In recent years, a wide variety of organic compounds bearing indole fragment have been attracted much attention due to the fact that many of them are pharmacologically and biologically active compounds.[1] Among them β-indolylketones are one of the most significant intermediates for the preparation of natural products such as hapalindole D 1.[2] In recent years, the utilization of multicomponent condensations (MCCs) to generate novel, drug-like scaffolds are replete in current organic reactions due to the fact that products can be prepared directly in a single step and the diversity can be achieved simply by varying the reaction substrates. In continuation of our work to synthesize new β-indolylketones,[3] herein, we report a novel base-induced syntheses of new β-indolylketones via a three-component condensation. Deoxybenzoin as carbonyl compound is introduced into the reaction (Scheme 1), and all the reactions were operated under ultrasound irradiation since the utilization of which can accelerate the progress of many reactions and shorten the reaction time.  相似文献   

15.
刘永东  钟儒刚 《结构化学》2010,29(3):421-431
Reactive nitrogen oxygen species(RNOS) implicate damage in biological systems,especially leading to inflammation,neurodegenerative and cardiovascular diseases,and cancer by altering the functions of biomolecules through the N-nitrosation and N-nitration reactions.The mechanisms of N-nitrosation and N-nitration reactions of ammonia and dimethylamine by RNOS,i.e.,N2O3,N2O4,N2O5 and ONOOH,were investigated at the CBS-QB3 level of theory.The computational results indicate that the N-nitrosation reaction prefers a concerted mechanism,in which a H-abstraction and ON-addition occur simultaneously,whereas a stepwise mechanism(also called a free radical mechanism) is more favorable for most nitrating agents in the N-nitration reaction,where NO2 first abstracts a hydrogen atom from the nitrogen of amines and then the induced intermediate reacts with NO2 once more to form the nitration products.However,the concerted pathway is still a feasible process for some nitrating agents such as N2O5.In addition,the relationship between the structures of different RNOS and their nitrosating or nitrating abilities was also investigated.  相似文献   

16.
宋俊峰  薛静  过玮 《催化学报》2000,21(5):437-440
Both polarographic reduction wave and catalytic wave of benzaldehyde were studied in 0 1 mol/L NH 4Cl NH 3·H 2O (pH 9 8) buffer solution. The results show that benzaldehyde is reduced in 1e, 1H + process to an intermediate free radical ArCHOH ·. ArCHOH · reacts with neutral molecule ArCHO to form a dimer (ArCHO ArCHOH) ·. The dimer is further reduced in 1e, 1H + process. In the presence of oxidant K 2S 2O 8, a polarographic catalytic wave of benzaldehyde is produced due to the oxidation of ArCHOH · by both K 2S 2O 8 and its intermediate SO - 4 · to regenerate benzaldehyde. The apparent rate constant of the oxidization reaction is 316 mol/(L·s).  相似文献   

17.
The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities.  相似文献   

18.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

19.
Jian-Jun Hu 《中国化学快报》2013,24(12):1106-1108
A novel diether-ester conjugated electron donor model compound, 1,3-dimethoxypropan-2-yl benzoate, was synthesized via a reaction of 1,3-dimethoxypropan-2-ol and benzoyl chloride in the presence of triethyl amine and 4-dimethylaminopryidine. Compared to the known routes of preparing diethers, which usually employ the reactions to O-alkylate the corresponding diols with O-alkylating reagents, the presented method here provides a new way to prepare the diether electron donor compounds. It avoids employing the traditional O-alkylation reactions, so that highly toxic O-alkylating chemicals, such as iodomethane, and very strong basic deprotonating reagents, such as alkoxides or metal hydrides, are not required. The product can be obtained in high yields without complicated purification processes. Catalyst component containing the electron donor compound was prepared and used to catalyze propylene polymerization.  相似文献   

20.
The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号