首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用从头计算RHF和密度泛函B3LYP方法以及LanL2DZ,SDD和6-31G(d)基组计算了配合物M(Im)2X2 (Im=imidazole;M=Zn(Ⅱ),Pd(Ⅱ),Pt(Ⅱ);X=F,Cl,Br,I)的几何构型以及Far-IR和Raman振动频率。计算结果表明,对Zn(Ⅱ)配合物而言,B3LYP/6-31G(d)方法得到的几何参数与实验值吻合得最好,B3LYP/SDD次之。在计算Far-IR和Raman振动频率时,发现采用6-31G(d)基组,两种方法计算的结果差别不大。对LanL2DZ和SDD基组而言,对计算结果影响较大的是理论方法,基组影响甚微,个别的振动频率基组影响较大,相比较而言,SDD基组得到的结果更好一些。本文所使用的两种计算方法都能得到与实验值比较吻合的结果,而用从头计算RHF方法计算的结果与实验值更接近一些。在此基础上,预测了Pd(Ⅱ)和Pt(Ⅱ)配合物的Far-IR和Raman振动频率。  相似文献   

2.
The vibrational spectra of mixed cyanide-halide complexes, M(CN)4X 2 2- and M(CN)5X2- (M=Pt and Pd; X=F, Cl, Br and I), have been systematically investigated by ab initio RHF, B3LYP and MP2 methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of platinum complexes are evaluated via comparison with the experimental values. In the infrared frequency region, the C--N stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations, -16-4 cm(-1) for Pt(CN)4X 2 2- and -18 to -2 cm(-1) for Pt(CN)5X2-. However, in far-infrared region, the results obtained at RHF level are better than those calculated at B3LYP and MP2 levels. For RHF/SDD method, the deviations for Ptz.sbnd;X and Ptz.sbnd;C stretching vibrational frequencies are -14-1 and -12 to -2 cm(-1) in the complex Pt(CN)4X2 2-, -19 to -11 and -15-14 cm(-1) in the Pt(CN)5X2- complex, respectively. The vibrational frequencies of palladium(IV) and some platinum(IV) complexes that have not been experimentally reported are predicted.  相似文献   

3.
The vibrational spectra of group IVB elements halides MX4 (M=Ti(IV), Zr(IV), Hf(II); X=F, Cl, Br and I), have been investigated by ab initio RHF, MP2 and density functional theory B3LYP method with LanL2DZ basis sets. The optimized geometries, calculated vibrational frequencies and Far-IR intensities of MX4 are evaluated via comparison with experimental data. The vibrational frequencies, calculated by these methods, are compared to each other. The results indicate that B3LYP method is more reliable than RHF and MP2 methods for the frequencies calculations for these compounds. With this method, some vibrational frequencies of M2X6(2+)(M=Ti(IV), Zr(IV) and Hf(II); X=F, Cl, Br and I) are also predicted.  相似文献   

4.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

5.
The ionic complexes [Pd(NP 3)X]X [NP 3 = tris[2-(diphenylphosphino)ethyl]amine, X = Cl (1), Br(2)] and [M(PP 3)X]X [PP 3 = tris[2-(diphenylphosphino)ethyl]phosphine, M = Pd, X = Cl (3), Br(4); M = Pt, X = Cl (5), Br (6)] contain square pyramidal (1, 2) and trigonal bipyramidal (3- 6) cations with three fused chelate rings to M and one M-X bond. By addition of AgX salts (X = Cl, Br, NO 3) an unexpected ring-opening reaction occurs with formation of the heteronuclear species PdAg(NP 3)X 3 [X = Cl (7), Br (8)], MAg(PP 3)X 3 [M = Pd, X = Cl (9), Br (10), NO 3 (13);M = Pt, X = Cl (11), Br (12), NO 3 (14)]. The complexes have been characterized in the solid state and solution. The X-ray crystal structures of 9 and 13 reveal a distorted square-planar arrangement to Pd(II) that is coordinated to three P of PP 3 (the central and two terminal atoms) and to one chloride (9) or one oxygen atom of NO 3 (13). The resultant dangling phosphorus of the ring opening is bound to Ag(I) that completes the three- [PAgCl 2 ( 9)] and four-coordination [PAg(ONO 2)(O 2NO) (13)] through the donor atoms of the anions with the nitrates in 13 unusually acting as both mono- and bidentate ligands. Complexes 7, 8, 10, and 11 undergo oligomerization in solution. Complex 10 oligomerizes giving rise to the ionic compound [Pd 4Ag 2(PP 3) 2 Br 9]Br ( 10a) whose X-ray crystal structure indicates the presence of cations with a Pd(mu-Br) 3Pd unit that connects via bromide bridges two BrPdP 2PPAg Br 2 fragments containing distorted square-planar and trigonal-planar Pd(II) and Ag(I) centers, respectively. The palladium(II) metal centers in the central unit afford the five-coordination (PdBr 5) with a distorted trigonal bipyramidal geometry. The ionic system [Pt 2Ag 2(PP 3) 2 Cl 5]Cl (11a) consists of chloride anions and heteronuclear monocations. The X-ray crystal structure reveals that the cations contain two distorted square-planar ClPtP 3 units bridged by one PAgCl(mu-Cl) 2AgP fragment that is bearing tetrahedral (PAgCl 3) and trigonal planar PAgCl 2 silver(I) centers. Further additions of the corresponding AgX salts to complexes 7- 14 did not give rise to any new ring-opening reaction.  相似文献   

6.
The vibrational spectra of Group IIB elements halides MX2 and their dimers M2X4 (M=Zn(II), Cd(II) and Hg(II); X=F, Cl, Br and I) have been systematically investigated by ab initio RHF and B3LYP methods with LanL2MB, LanL2DZ and SDD basis sets. The optimized geometries, calculated vibrational frequencies are evaluated via comparison with the experimental data. The vibrational frequencies, calculated by these methods with different basis sets, are compared to each other too. The best results can be obtained by RHF/SDD method, with this method, the deviations for MX2 and Hg2X4 are <7%. Some vibrational frequencies of M2X4 that have not been experimentally reported are also predicted.  相似文献   

7.
The far-infrared spectra of dihalodiammine complexes of Pd(II) and Pt(II) are calculated using ab initio method at RHF/LANL2DZ level. The calculated vibrational frequencies are in good agreement with the experimental ones except for M-N stretching frequencies in cis-M(NH3)2X2 complexes, and the reason for the deviation is discussed.  相似文献   

8.
The vibrational spectra of Os(CO)(6)(2+) and some of its mixed carbonyl-halide complexes, cis-Os(CO)(2)X(4)(2-), fac-Os(CO)(3)X(3)(-) and Os(CO)(5)X(+) (X=F, Cl, Br and I), have been systematically investigated by ab initio RHF and density functional B3LYP methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of complexes Os(CO)(6)(2+), cis-Os(CO)(2)X(4)(2-) and fac-Os(CO)(3)X(3)(-) are evaluated via comparison with the experimental values. In infrared frequency region, the C-O stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations less than 5%. In the far-infrared region, the B3LYP/SDD method achieved the best results with deviations less than 9% for Os-X stretching and less than 8% for Os-C stretching vibrational frequencies. The vibrational frequencies for Os(CO)(5)X(+) that have not been experimentally reported were predicted.  相似文献   

9.
The vibrational spectra of Ru(CO)6(2+) and some of its mixed carbonyl-halide complexes, cis-Ru(CO)2X4(2-), fac-Ru(CO)3X3- and Ru(CO)5X+ (X = F, Cl, Br and I), have been systematically investigated by ab initio RHF and density functional B3LYP methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of complexes Ru(CO)6(2+), cis-Ru(CO)2X4(2-) and fac-Ru(CO)3X3- are evaluated via comparison with the experimental values. In the infrared frequency region, the C-O stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations less than 5%. In the far-infrared region, the B3LYP/SDD method achieved the best results with deviations less than 8% for Ru-X stretching and less than 2% for Ru-C stretching vibrational frequencies. The vibrational frequencies for Ru(CO)5X+ that have not been experimentally reported were predicted.  相似文献   

10.
The vibrational spectra of some group IIIB elements halides MX(3) and their dimmers, M(2)X(6) (M=Sc(III), Y(III), La(III); X=F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.  相似文献   

11.
The ligands D((CH(2))(2)NHPiPr(2))(2) (D = NH 1, S 2) react with (dme)NiCl(2) or (PhCN)(2)MCl(2) (M = Pd, Pt) to give complexes of the form [D((CH(2))(2)NHPiPr(2))(2)MX]X (X = Cl, I; M = Ni, Pd, Pt) which were converted to corresponding iodide derivatives by reaction with Me(3)SiI. Reaction of 1 or 2 with (COD)PdMeCl affords facile routes to [κ(3)P,N,P-NH((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (8a) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (9a) in high yields. An alternative synthetic approach involves oxidative addition of MeI to a M(0) precursor yielding [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)NiMe]I (10), [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 8b Pt 11) and [κ(3)P,S,P-S(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 9b, Pt 12). Alternatively, use of NEt(3)HCl in place of MeI produces the species [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MH]X (X = Cl, M = Ni 13a, Pd 14a, Pt 16a). The analogs containing 2; [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)MH]X (M = Pd, X = PF(6)15: M = Pt, X = Br, 17a, PF(6)17b) were also prepared in yields ranging from 74-93%. In addition, aryl halide oxidative addition was also employed to prepare [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MC(6)H(4)F]Cl (M = Ni 18, Pd 19) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)Pd(C(6)H(4)F)]Cl (20). Crystal structures of 3a, 4a, 5a, 6a, 8a, 9a, 14b and 16b are reported.  相似文献   

12.
Palladium and platinum dihalides react with dl-selenomethionine (sem), yielding the complexes [M(sem)X2](M=Pd,X=Cl or Br;M=Pt,X=Cl) and, in the presence of N,N-dimethylformamide (dmf), the species [M(sem)X2]·dmf (M=Pd, X=I; M=Pt, X=Cl, Br or I). The complexes were characterized by i.r. and proton n.m.r. spectroscopy and by thermogravimetric analysis, and their properties were compared with those of the dl-methionine analogues [M(Met)Cl2] and [Pt(Met)Cl2]·dmf. On the basis of n.m.r. data in deuteriated dimethyl sulfoxide, the platinum complexes undergo ligand rearrangement to form [Pt(sem)2]2+ moieties whereas the solvent does not seem to interact with the palladium coordination sphere, which contains the chelated N, Se ligand.  相似文献   

13.
Summary Complexes of formulae Ni(HRS)2X2 (X=Cl or Br), M(HRS)2Y2 (M=Ni or Pd; Y=NO2 or C1O4), Pd(HRS)X2 (X=Cl, Br or I), Pt(HRS)X2 (X=Cl or Br), Pt(HRS)2(ClO4)2 and M(RS)2 (M=Pd or Pt) where HRS and RS denote 1-methyl-4-mercaptopiperidine in the zwitterionic or in the thiolato form, respectively, have been prepared and characterized. In all the complexes the ligands are coordinated exclusively through sulphur. Polymeric structures consisting of square-planar geometry with sulphur-bridged metal atoms are proposed in each case.  相似文献   

14.
镍(II)、钯(II)、铂(II)-环戊基苯基膦配合物的合成及表征   总被引:1,自引:0,他引:1  
李同信  宋永瑞  车迅 《化学学报》1991,49(2):158-163
合成了十五种配合物MX~2[(C~5H~9)~nPPh~3-n]~2系列, 其中M=Ni, X=Cl, Br,I; M=Pd, Pt, X=Cl; 且C~5H~9代表环戊基, n=1, 2, 3。通过元素分析、远红外光谱及紫外光谱确定了这些配合物的化学组成和空间构型。讨论了不同配体对配合物结构的影响。  相似文献   

15.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

16.
车迅  宋果男  李同信 《化学学报》1989,47(10):962-966
本工作合成了下述金属配合物: MCl2L2(M=Pd, Pt), NiX2L2(X=Cl, Br, I),L=PPh3-x(C5H9)x(x=0-3), 并研究了它们的远红外光谱和某些低频Raman光谱, 对某些M-P, M-X振动谱带做出了归属, 并提供结构信息。  相似文献   

17.
Summary Two ditertiaryarsines,o-phenylenebis(diphenylarsine), (pdpa) ando-phenylenebis(di-p-tolylarsine), (pdta) yield some new complexes of palladium(II) and platinum(II). These are: square planar M(pdta)X2 · nCH2Cl2, [M = Pd, X = Cl, Br or NCS; M = Pt, X = Cl]; [Pt(A-A)2] X2 · nCH2Cl2, [(A-A) = pdta, X = Cl, NCS or ClO4; (A-A) = pdpa, X=ClO4] and [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2, [M = Pd, (A-A) = pdta; M = Pt, (A-A) = pdpa]; distorted octahedral M(pdta)2-X2nCH2Cl2, [M = Pd, X = I; M = Pt, X = Br or I] and [Pd(pdta)2(H2O)2](ClO4)2, and five coordinate [M(A-A)2X] ClO4 · nCH2Cl2, [M = Pd, Pt, (A-A) = pdta, X = I; M = Pt, (A-A) = pdpa, X = Br or I]. The [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2 complexes are novel in the sense that they contain bridging thiocyanate together with ionic perchlorate. The stereochemical assignments have been made on the basis of i.r. and u.v. spectra as well as conductance data.  相似文献   

18.
The vibrational spectra of MM'2X8(2-) and trans-MM'2S6O2(2-) (M = Ni(II), Pd(II), Pt(II); M' = Mo, W; X = O, S) are calculated using ab initio method at RHF/LanL2DZ level. The calculated vibrational frequencies of MM'2S8(2-) and trans-MM'2O2S6(2-) are evaluated via comparison with experimental data. The results obtained by this method have the deviation <5% for M'S and MS stretching vibrational frequencies, however, relatively higher deviation is obtained for M'O stretching vibrational frequencies. Some vibrational frequencies of these complexes that have not been experimentally reported are also predicted and some of the experimental values are assigned.  相似文献   

19.
Summary 2,6-Dimethyl-4H-pyran-4-thione (DMTP) acts as a sulphur donor towards PtII and PdII halides yielding adducts of general formula [M(DMTP)2X2] (M=Pd or Pt; X=Cl, Br or I). When complex syntheses are performed in benzene, the solvated species [M(DMTP)2X2]·C6H6 (M=Pd or Pt; X=Cl or Br) are obtained. The compounds have been characterized by i.r. and n.m.r. (1H and13C) spectroscopy and by thermogravimetric data. The adduct geometry and the influence of benzene are discussed.  相似文献   

20.
采用密度泛函方法(B3LYP)优化了MX2(AsH3)2[M=Pd;X=Cl(1),Br(2),I(3)和M=Pt;X=Cl(4),Br(5),I(6)]的基态结构,得到的几何参数与实验结果符合.以基态几何为基础,将TD-DFT方法用于计算标题配合物的电子吸收光谱.研究结果表明,金属的dx2-y2与配体所组成的反键轨道为LUMO轨道,从而该类配合物具有d-d跃迁属性的吸收带;在多数跃迁过程中,配体也有较大的贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号