首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co3O4/聚吡咯/氧化石墨烯(Co3O4/Ppy/GO).其形貌为Co3O4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co3O4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800℃高温煅烧处理后,Co3O4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co3O4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co3O4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co3O4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.  相似文献   

2.
提出并验证了一种通过普通自由基聚合在纳米TiO2表面接枝聚甲基丙烯酸甲酯的简单方法.通过在纳米TiO2粒子表面引入伯胺分子层(纳米TiO2-NH2粒子),利用Cu2+-胺氧化还原体系实现了CuSO4催化纳米TiO2-NH2粒子表面引发甲基丙烯酸甲酯(MMA)的自由基接枝聚合,从而一步得到表面固定有聚甲基丙烯酸甲酯链的纳米TiO2杂化粒子(纳米TiO2-PMMA杂化粒子).红外光谱、热失重分析与电镜的结果都表明PMMA已经被接枝到纳米TiO2粒子表面,且接枝率随着聚合时间的延长而逐渐增大,PMMA链的引入有助于降低纳米TiO2粒子微球的团聚程度、增强与有机溶剂分子的范德华力,从而提高分散稳定性.反应溶液中没有游离均聚物形成.  相似文献   

3.
A one-pot route was illustrated to synthesize stable well-dispersed silver colloids stabilized by polyacrylamide on a large scale. Reduction of silver ions and polymerization of acrylamide occurred almost simultaneously in the absence of a commonly used reducing agent and initiator. A possible mechanism for the formation of silver nanoparticles with bimodal size distribution was proposed. The structure and composition of the obtained nanoparticles were characterized carefully. Furthermore, light scattering simulation and UV-vis absorption studies confirmed that the obtained colloids were the mixture of Ag and Ag2O nanoparticles. The presence of silver oxide layers on the nanoparticle surface should be responsible for the broadening of the surface plasmon band of silver nanoparticles. Ag2O layers could be added or removed from Ag nanoparticle surfaces by the addition of HNO3, HAc, or NaCl solution to the as-obtained silver colloids.  相似文献   

4.
Abstract

The synthesis, characterization, and development of new nanoparticle materials have both scientific and technological significance. Surface initiated polymerization (SIP) from nanoparticle surfaces involves the growth of end‐tethered polymer brushes where the length or thickness can be more than twice the radius of gyration (Rg) compared to a free polymer in solution. Different mechanisms are possible on a variety of initiators, reaction conditions, monomers, and nanoparticles. Important differences to solution and bulk polymerization can be observed where the nanoparticles with grafted initiators behave as macroinitiators. In turn, the development of these materials will allow the preparation of thermodynamically and kinetically stable nanocomposites and colloids. Through the careful use of surface sensitive spectroscopic and microscopic techniques, much has been gained from the direct and in‐situ analysis of grafted polymers on the nanoparticles with regards to the kinetics and mechanism of the polymerization process. Parallels can be drawn to SIP on flat surfaces where surface sensitive spectroscopic and microscopic measurements are complementary to analysis methods for colloidal particles. Thus, this review surveys the different polymerization mechanisms and procedures towards forming core‐shell types of hybrid inorganic–organic polymer nanoscale materials.  相似文献   

5.
导电高分子/贵金属复合纳米材料因其在催化、传感、表面增强拉曼、光热治疗等诸多领域的应用前景而受到广泛关注.本文主要介绍我们课题组近年来利用可控合成策略制备的负载型和包埋型两种结构聚苯胺/贵金属复合纳米材料,以及利用复合纳米材料的结构和功能特性,对其在多相催化领域的应用、结构与催化性能之间构效关系的探索.  相似文献   

6.
Functionalization of monodisperse magnetic nanoparticles   总被引:1,自引:0,他引:1  
We report a new strategy for the preparation of monodisperse, water-soluble magnetic nanoparticles. Oleic acid-stabilized magnetic nanocrystals were prepared by the organic synthesis route proposed by Sun et al. (J. Am. Chem. Soc. 2004, 126, 273.), with size control obtained via seeded-mediated growth. The oleic groups initially present on the nanoparticle surfaces were replaced via ligand exchange reactions with various capping agents bearing reactive hydroxyl moieties. These hydroxyl groups were (i) exploited to initiate ring opening polymerization (ROP) of polylactic acid from the nanoparticle surfaces and (ii) esterified by acylation to permit the addition of alkyl halide moieties to transform the nanoparticle surfaces into macroinitiators for atom transfer radical polymerization (ATRP). By appropriate selection of the ligand properties, the nanoparticle surfaces can be polymerized in various solvents, providing an opportunity for the growth of a wide variety of water-soluble polymers and polylectrolyte brushes (both cationic and anionic) from the nanoparticle surfaces. The nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), electron microscopy, and light scattering. Light scattering measurements indicate that the nanoparticles are mostly present as individual nonclustered units in water. With pH-responsive polymers grown on the nanoparticle surfaces, reversible aggregation of nanoparticles could be induced by suitable swings in the pH between the stable and unstable regions.  相似文献   

7.
In this study, stimuli-responsive nanoparticles were prepared by solution polymerization. Two synthesis routes are proposed to synthesize the particles, the monomer route and the polymer/monomer route. For the monomer route, pH and thermal sensitive nanoparticles were synthesized from acrylic acid and N-isopropylacrylamide. For the polymer/monomer route, the pH sensitive nanoparticles were synthesized from chitosan and acrylic acid. The effect of reaction time, initiator concentration and agitation rate on the particle size and the size distribution were investigated. The stimuli-responsive nanoparticles could be directly blended with other polymers to prepare stimuli-responsive functional membranes.  相似文献   

8.
Nanocomposites based on thermoset polycarbonate and fumed silica nanoparticles were prepared by radical in situ polymerization. To avoid nanoparticle agglomeration, silica nanoparticles modified with a vinyl end capped silane agent were also used. The effect of silica particles and silica surface modification on the extent of polymerization and network density was evaluated. Silica nanoparticles reduced the amount of soluble oligomeric species forming during the diallyl carbonate polymerization and this was particularly pronounced in the case of modified silica. Nevertheless, the participation of surface modifier reactive groups to polymerization also caused a lower polycarbonate network density. SEM analysis showed that the proposed interfacial strategy was effective to control nanoparticle dispersion; no agglomeration phenomena were observed using modified silica. Nanocomposites preserved the polycarbonate stiffness while a toughness increase was recorded with the addition of neat silica. Particularly interesting was the effect of nanoparticles on the improvement of the abrasion resistance of the polycarbonate thus overcoming one of the drawback of this material.  相似文献   

9.
The electrochemical polymerization of polypyrrole (Ppy) films on AZ31Mg alloys was carried out using cyclic voltammetery in 0.5 M sodium salicylate solution containing 0.25 M pyrrole and different concentration of sodium fluoride (NaF). Corrosion performance of the Ppy film was assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 % NaCl solution. It was observed that Ppy coatings doped in the presence of 100 ppm NaF provide the best corrosion protection for magnesium and the corrosion potential shifted about 290 mV toward nobler potentials and decrease the corrosion current density about one order of magnitude. The surface analysis of the coatings showed that the addition of F? dopant anions led to an improvement in the smoothness, thickness, and adhesion quality of the synthesized Ppy coating on the Mg surface. The scanning electron microscopy (SEM) studies of the fluoride-doped Ppy films revealed that the synthesized coating has a closely packed globular structure which was composed of nanoparticles of Ppy.  相似文献   

10.
Dendritic polyaniline (PANI) nanoparticles were synthesized via oxidative polymerization of aniline, using ammoniumperoxodisulfate as an oxidant, and CM-chitin as a template. The reaction was performed under acidic conditions and the template was removed after the polymerization was completed. Molecular characterization (including UV-vis, FTIR, TGA, and XRD) suggests that the structure of the synthesized dendritic PANI nanoparticles is identical to that of the emeraldine form of PANI, synthesized by the conventional route (without the addition of the CM-chitin template). SEM images reveal that the dendritic PANI nanoparticles have an average diameter in the nanometer range, and are globular in shape, with radially oriented PANI dendrites; in contrast, irregularly-shaped aggregates of PANI are obtained using the conventional synthesis. It was further found that the size of the dendritic PANI nanoparticles is dependent on the CM-chitin content. The higher the CM-chitin concentration, the smaller is the size of the dendritic PANI nanoparticles obtained. An interpretation of these observations and a possible formation mechanism are proposed based on self-assembly between the CM-chitin chains and the aniline monomer.  相似文献   

11.
A new simple concept for the stoichiometrical functionalization of nanoparticles based on free radical polymerization of vinyl protected nanoparticles is presented. To demonstrate this concept 2-bis(4-vinylphenyl)disulfane was synthesized and used in the synthesis of gold nanoparticles, leading to 4-vinylthiophenol functionalized nanoparticles. Simple free radical polymerization of these particles initiated by 4,4'-azobis-(4-cyanopentanoic acid) delivered nanoparticles with a single carboxyl group. These monofunctionalized gold nanoparticles were utilized for chemical preparation of gold nanoparticle dimers as well as for construction of gold nanoparticle arrays via binding to polyallylamine.  相似文献   

12.
This paper describes a method to pattern surfaces with Au-Ag hybrid nanoparticles. We used block copolymer micelle lithography of Au nanoparticles and electroless deposition of Ag. The combination of these two methods enables independent tuning of nanoparticle spacing and Ag-shell size. For this purpose, 8 nm large patterned Au nanoparticle seeds served as nuclei for the electroless deposition of silver that is based on a modified Tollens process with glucose. By adjusting the reaction conditions, specific growth of Ag on top of the Au seeds has been accomplished and analyzed by SEM, HRTEM, XEDS, and UV-vis spectroscopy. We could show that this versatile and green method is feasible on glass as well as on biomedical-relevant polymers like poly(ethylene glycol) hydrogels and amorphous Teflon. In conclusion, this method provides a new route to pattern glass and polymeric surfaces with Au-Ag hybrid nanoparticles. It will have many uses in applications such as surface enhanced Raman spectroscopy (SERS) or antimicrobial coatings for which hybrid nanoparticle density, size, and morphology are important.  相似文献   

13.
钱虎军  吕中元 《高分子学报》2020,(1):55-65,I0003
高分子与纳米粒子复合是改善高分子材料性能的有效途径.近20年来关于高分子/纳米粒子复合物的研究引起了学术界广泛的兴趣.然而由于此类体系中的影响因素复杂,虽然学者们在相关材料性能的研究方面取得了重要进展,但是相关理论的发展却相对滞后,其中一个重要原因是实验上表征手段的缺失,导致对体系中纳米粒子与本体高分子链相互作用规律的认识(尤其是两者界面性质的认识)不够.本文总结和阐述了我们近几年利用分子动力学模拟技术研究高分子/单链高分子纳米粒子复合体系的主要结果,并围绕此类复合体系中的界面结构及动力学性质,讨论并总结了纳米粒子对本体高分子链的作用范围及影响规律,指出单链纳米粒子对熔体链的作用范围与纳米粒子的自身尺寸相当,而与熔体高分子链的分子量没有直接的关系.该结论将为纳米复合体系高分子理论的发展提供重要参考.  相似文献   

14.
A novel method of measuring the concentration of the local anesthetic ropivacaine drip bags used in hospi‐ tals was developed using electrochemical impedance technique. Polypyrrole (Ppy)/graphene oxide (GO) composites were prepared by electrochemically polymerization over Au electrodes, which served as working electrodes. The Ppy/GO composite electrodes were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Various concentrations of ropivacaine (0.1–20 ppm) were prepared in a sample drip bag solution of 0.9 % NaCl from hostpital. The composite Ppy/1 % GO electrode exhibited strongest linearity (R2=0.960) than the Ppy electrode (R2=0.928) at a frequency of 100 kHz. The detection limits of ropivacaine on Ppy and Ppy/1 % GO were calculated as 0.11 ppm and 0.08 ppm, respectively. The proposed system yielded response and recovery times under 1 sec detecting 0.1 ppm (100 g/L) of ropivacaine; thus, the proposed online method is promising for measuring ropivacaine concentrations in drip bags. Molecular simulations and equivalent circuits were applied to explain the dynamic behavior of ropivacaine detection system using Ppy and Ppy/GO materials.  相似文献   

15.
The synthesis and characterization of water-soluble dispersions of Ag nanoparticles by the reduction of AgNO(3) using tryptophan under alkaline synthesis conditions are reported. The Ag nanoparticle formation was very slow at low concentration and rapid at extremes. For surface modification and redox reactions, manipulating the interparticles interaction controlled the size of Ag nanoparticles aggregates. Our results suggest that the replacement of the BH(4)(-) ions adsorbed on the nanoparticle surface by tryptophan destabilizes the particles and further caused aggregation. A mechanism is proposed for the formation of silver nanoparticles by tryptophan. The experimental results are supported by theoretical calculations. The Ag nanoparticles were characterized by UV-vis absorption, dynamic light scattering and transmission electron microscopy techniques.  相似文献   

16.
In the Suzuki reaction between phenylboronic acid and iodobenzene catalyzed by palladium nanoparticles, our previous studies suggested that the phenylboronic acid adsorbs on the nanoparticle surface and then interacts with the iodobenzene that is present in solution. In the present study, FTIR is used to examine the change in the vibrational frequencies of phenylboronic acid in films with and without the addition of palladium nanoparticles. The large change in the B-O stretching frequency of phenylboronic acid from 1348 to 1376 cm(-1) in the presence of sodium acetate and palladium nanoparticles strongly suggests that the mode of binding of phenylboronic acid to the Pd nanoparticle surface involves a B-O-Pd type of bonding. Shifts in the B-C stretching mode and the out-of-plane phenyl C-C ring deformation bands associated with phenylboronic acid provide additional confirmations of the binding process. It is also shown that the phenylboronic acid needs to be in the deprotonated form in the presence of sodium acetate (phenylboronate anion) to bind to the palladium nanoparticle surface. No changes in the characteristic bands of iodobenzene were observed in films made in the presence of the palladium nanoparticles. The FTIR studies provide proof of the mode of binding that occurs in the nanoparticle surface for the first time and also confirms the mechanism of the Suzuki reaction that we proposed previously.  相似文献   

17.
Two-dimensional gold nanoparticle assemblies with an average nanoparticle size of 6 nm are generated on silicon and indium tin oxide (ITO)-coated glass surfaces, functionalized with polyethylenimine (PEI) silane monolayer. Contact angle measurements show increased hydrophilic character of the surface due to nanoparticle formation. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to monitor the chemical and structural development of these nanostructures, while UV–vis spectroscopy is used to follow the formation of the nanoparticle assemblies. This paper elucidates a simple route to in situ synthesis of surface immobilized gold nanoparticles under ambient conditions and also extends to the synthesis of other surface bound nanoparticles, like silver and platinum. Gold nanoparticle assemblies generated in this study are also catalytically active towards methanol oxidation reaction (MOR), which is relevant for direct methanol fuel cells (DMFCs).  相似文献   

18.
This study describes a new, basic procedure for the tuning of some analytical parameters of enzymatic biosensors that are based on hydrogen peroxide-producing oxido-reductases. An amperometric biosensor based on glucose oxidase (GOx) (EC 1.1.3.4) from Penicillum vitale, immobilized on a carbon rod electrode by cross-linking with glutaraldehyde, was exploited as a model system for demonstration of the approach described here. Such an important analytical parameter as the upper detection limit was dramatically changed by the formation of a polypyrrole conducting polymer layer by the GOx-induced polymerization of polypyrrole (Ppy). An increase in the upper detection limits for differently modified electrodes was estimated by calculation of the apparent Michaelis-Menten constant [K(M(app))]. A significant increase in the long-term stability of the GOx-based electrode modified by Ppy (GOx/Ppy) was detected compared with that of an unmodified one. Further application of this approach, based on the self-encapsulation of glucose oxidase and other oxidases, is predicted for such biosensors where extension of the detection rate as well as K(M(app)) are required.  相似文献   

19.
本文采用种子微乳液聚合方法,经后期氨化反应,合成了聚丙烯酸酯纳米粒子乳液,讨论了乳化剂、缓冲剂和水溶性丙烯酸单体等添加组分对乳粒子形态和胶膜吸水率的影响,并探讨了微乳液聚合的反应机理。  相似文献   

20.
Redox enzyme – glucose oxidase E.C. 1.1.3.4 from Penecillum vitale (GOx) – initiated polypyrrole (Ppy) synthesis was applied for the formation of polypyrrole based nanoparticles. The increase in optical absorbance at λ = 460 nm was exploited for the monitoring of polypyrrole polymerisation process. The shape and size of the formed Ppy nanoparticles was also monitored by means of contact mode AFM. The highest increase in the diameter of the formed Ppy nanoparticles was detected during 15-day period. AFM imaging was performed in contact mode to investigate the shape and flexibility of particles deposited on the SiO2 and Pt surfaces. Contact mode AFM investigations allowed us to conclude that after drying at 50 °C the formed Ppy particles are more flexibly deposited on the Pt electrode if compared to those deposited on the SiO2 substrate. The application of well-shaped Ppy nanoparticles in biomedicine, chromatography and bioanalysis may be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号