首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper we prove existence and comparison results for nonlinear parabolic equations which are modeled on the problem
$\left\{{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\right.$\left\{\begin{array}{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\end{array}\right.  相似文献   

2.
The paper proves the nonexistence of the solution for the following Cauchy problem\begin{align*}\begin{cases}u_{t} ={\rm div}\left(\left|\nabla u^{m} \right|^{p-2} \nabla u^{m} \right)-\lambda \; u^{q},&\qquad \left(x,t\right)\in S_{T} ={\mathbb{R}}^N \times \left(0,T\right), \\u\left(x,\; 0\right)=\delta \left(x\right), &\qquad x\in {\mathbb{R}}^,\end{cases}\end{align*}under some conditions on \textit{m,p,q},$\lambda$, where $\delta $ is Dirac function.  相似文献   

3.
This paper is devoted to the study of uniform energy decay rates of solutions to the wave equation with Cauchy–Ventcel boundary conditions:
where Ω is a bounded domain of (n ≥ 2) having a smooth boundary , such that with , being closed and disjoint. It is known that if a(x) = 0 then the uniform exponential stability never holds even if a linear frictional feedback is applied to the entire boundary of the domain [see, for instance, Hemmina (ESAIM, Control Optim Calc Var 5:591–622, 2000, Thm. 3.1)]. Let be a smooth function; define ω 1 to be a neighbourhood of , and subdivide the boundary into two parts: and . Now, let ω 0 be a neighbourhood of . We prove that if a(x) ≥ a 0 > 0 on the open subset and if g is a monotone increasing function satisfying k|s| ≤ |g(s)| ≤ K|s| for all |s| ≥ 1, then the energy of the system decays uniformly at the rate quantified by the solution to a certain nonlinear ODE dependent on the damping [as in Lasiecka and Tataru (Differ Integral Equ 6:507–533, 1993)]. Research of Marcelo M. Cavalcanti was partially supported by the CNPq Grant 300631/2003-0. Research of Valéria N. Domingos Cavalcanti was partially supported by the CNPq Grant 304895/2003-2.  相似文献   

4.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

5.
The aim of this work is to study the existence of solutions of quasilinear elliptic problems of the type
$\left\{{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \right.$\left\{\begin{array}{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \end{array}\right.  相似文献   

6.
We are concerned with existence, positivity property and long-time behavior of solutions to the following initial boundary value problem of a fourth order degenerate parabolic equation in higher space dimensions   相似文献   

7.
We study the behavior of positive solutions of the following Dirichlet problem
$ \left \{ {ll} -\Delta_{p}u=\lambda u^{s-1}+u^{q-1} &\quad {\rm in} \enspace \Omega \\ u_{\mid\partial \Omega}=0 \right. $ \left \{ \begin{array}{ll} -\Delta_{p}u=\lambda u^{s-1}+u^{q-1} &\quad {\rm in} \enspace \Omega \\ u_{\mid\partial \Omega}=0 \end{array} \right.  相似文献   

8.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

9.
In the present paper, by applying variant mountain pass theorem and Ekeland variational principle we study the existence of multiple nontrivial solutions for a class of Kirchhoff type problems with concave nonlinearity $$ \left\{\begin{array}{ll} -(a + b \int\nolimits_{\Omega} |\nabla{u}|^{2})\triangle{u} = \alpha(x)|u|^{q-2}u + f(x, u),\quad{\rm in}\;\Omega,\\ u = 0,\;\quad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\rm on}\;\partial\Omega, \end{array} \right. $$ A new existence theorem and an interesting corollary of four nontrivial solutions are obtained.  相似文献   

10.
In this paper we study the following nonhomogeneous Schrödinger–Maxwell equations $\left\{\begin{array}{ll} {-\triangle u+V(x)u+ \phi u=f(x,u)+h(x),} \quad {\rm in}\,\,\,{\mathbf{R}}^3,\\ {-\triangle \phi=u^2, \qquad\qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,{\mathbf{R}}^3,} \end{array} \right.$ where f satisfies the Ambrosetti–Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein–Gordon–Maxwell equations $\left\{\begin{array}{ll} {-\triangle u+[m^2-(\omega+\phi)^2]u=|u|^{q-2}u+h(x), \quad {\rm in} \,\,\,{\mathbf{R}}^3,}\\ {-\triangle \phi+ \phi u^2=-\omega u^2, \qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,\,{\mathbf{R}}^3,} \end{array} \right.$ are also obtained when 2 < q < 6.  相似文献   

11.
In this work, we consider the following second-order m-point boundary value problem on time scales $$\left\{\begin{array}{@{}l}(\phi_{p}(u^{\triangle}(t)))^{\nabla}+h(t)f(t,u(t),u^{\triangle }(t))=0,\quad t\in(0,+\infty)_{\mathbb{T}},\\[4pt]\displaystyle u(0)=\sum_{i=1}^{m-2}\alpha_{i}u(\eta_{i}),\qquad u^{\triangle}(+\infty)=\sum_{i=1}^{m-2}\beta_{i}u^{\triangle}(\eta_{i}).\end{array}\right.$$ We establish new criteria for the existence of at least three unbounded positive solutions. Our results are new even for the corresponding differential $({\mathbb{T}}={\mathbb{R}})$ , difference equation $({\mathbb{T}}={\mathbb{Z}})$ and for the general time-scale setting. An example is given to illustrate our results.  相似文献   

12.
Fujita exponents for evolution problems with nonlocal diffusion   总被引:1,自引:0,他引:1  
We prove the existence of a critical exponent of Fujita type for the nonlocal diffusion problem
$\left\{{l@{\quad}l}u_t(x, t) = J*u(x, t)-u(x, t) + u^p(x, t), & \qquad x \in \mathbb{R}^N,\; t > 0,\\ u(x, 0) = u_0(x), & \qquad x \in\mathbb{R}^N,\right.$\left\{\begin{array}{l@{\quad}l}u_t(x, t) = J*u(x, t)-u(x, t) + u^p(x, t), & \qquad x \in \mathbb{R}^N,\; t > 0,\\ u(x, 0) = u_0(x), & \qquad x \in\mathbb{R}^N,\end{array}\right.  相似文献   

13.
In this paper, the authors establish the existence of at least three weak solutions for the Kirchhoff-type problem $$\left\{\begin{array}{ll}-K \left( \int_{\Omega}| \nabla u(x)|^{2}dx \right) \Delta u(x)= \lambda f(x,u)+\mu g(x,u),\quad {\rm in}\; \Omega,\\u=0, \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\quad {\rm on}\; \partial \Omega, \end{array} \right.$$ under appropriate hypotheses. The proofs are based on variational methods.  相似文献   

14.
Multiple blow-up for a porous medium equation with reaction   总被引:1,自引:0,他引:1  
The present paper is concerned with the Cauchy problem
$\left\{{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \right.$\left\{\begin{array}{ll}\partial_t u = \Delta u^m + u^p & \quad {\rm in}\; \mathbb R^N \times (0,\infty),\\ u(x,0) = u_0(x) \geq 0 & \quad {\rm in}\; \mathbb R^N, \end{array}\right.  相似文献   

15.
A detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEP)
$ \left(\sum_{\ell=0}^d A_{\ell} \lambda^{\ell} \right)x=0, \quad A_{d-\ell}=\varepsilon A_{\ell}^{\star} \quad{\rm for}\,\ell=0,1,\ldots,\lfloor d/2\rfloor, $ \left(\sum_{\ell=0}^d A_{\ell} \lambda^{\ell} \right)x=0, \quad A_{d-\ell}=\varepsilon A_{\ell}^{\star} \quad{\rm for}\,\ell=0,1,\ldots,\lfloor d/2\rfloor,  相似文献   

16.
In this paper we deal with the following quasilinear parabolic problem $$\left\{\begin{array}{l@{\quad}l} (u^\theta)_t - \Delta_p {u} = \lambda \frac{u^{p - 1}}{|x|^{p}} + u^q + f,\,\, u \geq 0 \quad {\rm in} \;\;\Omega \times (0, T),\\ u(x, t) = 0 \quad\qquad\qquad\qquad\qquad\qquad\qquad {\rm on}\; \partial \Omega \times(0, T),\\ u(x, 0) = u_0(x), \,\,\, \qquad\qquad\qquad\qquad\qquad x \in\; \Omega,\end{array}\right.$$ where θ is either 1 or (p ? 1), \({N \geq 3, \,\Omega \subset \mathcal{IR}^N}\) is either a bounded regular domain containing the origin or \({\Omega \equiv \mathcal{IR}^N}\) , 1 < p < N, q > 0 and u 0 ≥  0, f ≥  0 with suitable hypotheses. The aim of this work is to get natural conditions to show the existence or the nonexistence of nonnegative solutions. In the case of nonexistence result, we analyze blow-up phenomena for approximated problems in connection with the classical Harnack inequality, in the Moser sense, more precisely in connection with a strong maximum principle. We also study when finite time extinction (1 < p < 2) and finite speed propagation (p > 2) occur related to the reaction power.  相似文献   

17.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

18.
We study the radially symmetric Schr?dinger equation
$ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ), $ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ),  相似文献   

19.
We study the large time behavior of the solutions of the Cauchy problem for a semilinear heat equation,
$\partial_t u=\Delta u+F(x,t,u) \quad{\rm in} \;{\bf R}^N\times(0,\infty), \quad u(x,0)=\varphi(x)\quad{\rm in} \;{\bf R}^N,\quad\quad ({\rm P})$\partial_t u=\Delta u+F(x,t,u) \quad{\rm in} \;{\bf R}^N\times(0,\infty), \quad u(x,0)=\varphi(x)\quad{\rm in} \;{\bf R}^N,\quad\quad ({\rm P})  相似文献   

20.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号