首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NND schemes and numerical simulation of axial symmetric free jet flows   总被引:1,自引:0,他引:1  
Through a study on one-dimensional Navier-Stokes equations, it was found that the spurious oscillations occuring near shock waves with finite difference equations are related to the dispersion term in the corresponding modified differential equations. If the sign of dispersion coefficient is properly adjusted so that the sign changes across shock waves, the undesirable oscillations can be totally suppressed. Based on this finding, the non-oscillatory, containing no free parameters and dissipative shheme (NND scheme) is developed. This scheme is one of “TVD”. The axisymmetric free jet flows are simulated numerically using this scheme. The results obtained by the present scheme are compared with the experimental picture. It is shown that the agreement is very good, and that this scheme has advantages of high resolution for capturing shocks and contact discontinuities. Project supported by National Science Foundation of China  相似文献   

2.
强激波和强接触间断的数值模拟一直是计算流体力学里一个富有挑战性的课题,它们是很多实际流动的基础。三阶迎风紧致格式是一种具有较高分辨率的高精度方法,但是在计算激波时仍有数值振荡产生。本文根据数值解的群速度特性,在三阶迎风紧致格式的基础上提出了一种群速度控制格式,使得能够正确模拟含有强激波和强接触间断的复杂流动。在此基础上构造了求解包含大压力比和密度比的二维界面问题的数值方法。计算结果表明,方法对激波和接触间断的分辨效果是令人满意的。  相似文献   

3.
有限谱ENO格式及其应用   总被引:2,自引:0,他引:2  
首先对王健平提出的有限谱法^[1-3]做了进一步的理论研究,发现了一些新的有限谱法的插值基函数组,并互将有限谱法应用在ENO格式中,构造了有限谱ENO计算格式,然后通过对一维Euler方程的几个经典的模型问题和二维湍流与弱激波相互作用问题的数值计算,并且与理论解或准精确解进行比较分析,从而表明了此格式对于激波和其他间断具有较高的分辨率,在激波附近基本上没有明显的数值振荡,而且对于流场中的细致结构也具有相当高的精度。  相似文献   

4.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The behavior of discontinuities (weak shocks) of the parameters of a disturbed flow and their interaction with the discontinuities of the basic flow in the geometric acoustics approximation, when the variation of the intensity of such shocks along the characteristics or the bicharacteristics is described by ordinary differential equations, has been investigated by many authors. Thus, Keller [1] considered the case when the undisturbed flow is three-dimensional and steady, and the external inputs do not depend on the flow parameters. An analogous study was made by Bazer and Fleischman for the MGD isentropic flow of an ideal conducting medium [2], while Lugovtsov [3] studied the three-dimensional steady flow of a gas of finite conductivity for small magnetic Reynolds numbers and no electric field. Several studies (for example, [4]) have considered the behavior of discontinuities of the solutions from the general positions of the theory of hyperbolic systems of quasilinear equations. Finally, the interaction of weak shocks (or the equivalent continuous disturbances) with shock waves was studied in [5–11].In what follows we consider one-dimensional (with plane, cylindrical, and spherical waves) and quasi-one-dimensional unsteady flows, and also plane and axisymmetric steady flows. Two problems are investigated: the variation of the intensity of weak shocks in the presence of inputs which depend on the stream parameters, and the interaction of weak shocks with strong discontinuities which differ from contact (tangential) discontinuities.The thermodynamic properties of the gas are considered arbitrary. We note that the resulting formulas for the interaction coefficients of the weak and strong discontinuities are also valid for nonequilibrium flow.  相似文献   

6.
The paper presents a new high-resolution hybrid scheme combining implicit flux vector splitting with Harten's TVD, which is proved suitable for shock-capturing calculation in gasdynamics. Fluxsplitting procedures are applied to discretize the implicit part of the Euler equations whereas Harten's numerical fluxes are used to calculate the residual of steady-state solutions. It ensures good shock-capturing properties and produces sharp numerical discontinuities without oscillations. It excludes expansion shocks and leads only to physically relevant solutions. The block-line-Gauss-Seidel relaxation procedure (block-LGS) is used to solve the resulting difference equations. The time step and the CFL number are much larger than those in the linearized block-alternating-direction-implicit approximate factorization method (block-ADI). Numerical experiments suggest that the hybrid scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to the steady-state solution. Hence scheme seems to lead to an effective nonoscillatory shock capturing method for steady transonic flow. Project Supported by National Natural Science Foundation of China  相似文献   

7.
使用Roe格式计算多维流动问题时,在强激波附近会出现数值激波不稳定现象。带有剪切粘性的HLLEC格式不仅可以捕捉接触间断,而且表现出很好的稳定性。混合Roe格式和HLLEC格式来消除数值激波不稳定性。在强激波附近,通过激波面法向和网格界面法向的夹角来定义开关函数,使得数值通量在激波面横向切换成HLLEC格式。在其余地方,数值通量依然使用Roe格式来计算。数值试验表明,混合格式不仅消除了Roe格式的数值激波不稳定性,还最大程度地减少了HLLEC格式所带来的剪切耗散,保留了Roe格式高分辨率的优点。  相似文献   

8.
为更准确捕捉复杂流场的流动细节,通过对WENO格式的光滑因子进行改进,发展了一种新的五阶WENO格式。对三阶ENO格式进行加权可以得到五阶WENO格式,但是不同的加权处理,WENO格式在极值处保持加权基本无振荡的效果不同,本文构造了二阶精度的局部光滑因子,及不含一阶二阶导数的高阶全局光滑因子,从而实现WENO格式在极值处有五阶精度。基于改进五阶WENO格式,对一维对流方程、一维和二维可压缩无粘问题进行算例验证,并与传统WENO-JS格式和WENO-Z格式进行比较。计算结果表明,改进五阶WENO格式有较高的精度和收敛速度,有较低的数值耗散,能有效捕捉间断、激波和涡等复杂流动。  相似文献   

9.
建立了求解二维全非线性布氏(Boussinesq)水波方程的有限差分/有限体积混合数值格式. 针对守恒形式的控制方程,采用有限体积方法并结合 MUSTA格式计算数值通量, 剩余项则采用有限差分方法求解, 采用具有总变差减小(totalvariation diminishing, TVD)性质的三阶龙格-库塔法进行时间积分.该格式具备间断捕捉、程序实现简单、数值稳定性强、海岸动边界以及波浪破碎处理方便和可调参数少等优点.利用典型算例对数值模型进行了验证,计算结果与实验数据吻合较好.   相似文献   

10.
建立了求解二维全非线性布氏(Boussinesq)水波方程的有限差分/有限体积混合数值格式. 针对守恒形式的控制方程,采用有限体积方法并结合 MUSTA格式计算数值通量, 剩余项则采用有限差分方法求解, 采用具有总变差减小(totalvariation diminishing, TVD)性质的三阶龙格-库塔法进行时间积分.该格式具备间断捕捉、程序实现简单、数值稳定性强、海岸动边界以及波浪破碎处理方便和可调参数少等优点.利用典型算例对数值模型进行了验证,计算结果与实验数据吻合较好.  相似文献   

11.
The unsteady Euler equations are numerically solved using the finite volume one-step scheme recently developed by Ron-Ho Ni. The multiple-grid procedure of Ni is also implemented. The flows are assumed to be homo-enthalpic; the energy equation is eliminated and the static pressure is determined by the steady Bernoulli equation; a local time-step technique is used. Inflow and outflow boundaries are treated with the compatibility relations method of ONERA. The efficiency of the multiple-grid scheme is demonstrated by a two-dimensional calculation (transonic flow past the NACA 12 aerofoil) and also by a three-dimensional one (transonic lifting flow past the M6 wing). The third application presented shows the ability of the method to compute the vortical flow around a delta wing with leading-edge separation. No condition is applied at the leading-edge; the vortex sheets are captured in the same sense as shock waves. Results indicate that the Euler equations method is well suited for the prediction of flows with shock waves and contact discontinuities, the multiple-grid procedure allowing a substantial reduction of the computational time.  相似文献   

12.
A mathematical model that describes a one-dimensional approximation of interrelated processes of unsteady deformation of plane, cylindrical, and spherical packets of metallic woven grids and wave processes in the gas contained in pores is presented. Nonlinear equations of dynamics of two interpenetrating continua are solved numerically with the use of a modified Godunov scheme. Solutions of problems of the shock wave impact on plane and cylindrical packets of grids are obtained. Numerical results are found to agree with available experimental data. The character of explosive waves passing through a cylindrical packet of grids is studied.  相似文献   

13.
A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.  相似文献   

14.
Summary The governing differential equations of induced discontinuities behind longitudinal and transverse shock waves are derived for a class of linear materials with internal state parameters. These equations indicate that the behavior of the induced discontinuities depends, in particular, on the behavior of the shock amplitudes and non-linearly on the wave surface geometries. Solutions for the case of plane waves with initially flat profiles are obtained, and they indicate that the global behavior of the induced discontinuities need not be monotone depending on the interpretation of the material responses.
Sommario Le equazioni di evoluzione per discontinuità indotte da onde d'urto longitudinali e trasversali sono ricavate per una classe di materiali lineari con parametri di stato interni. Tali equazioni indicano che il comportamento delle discontinuitá indotte dipende, in particolare, dall'ampiezza dell'onda d'urto e, non linearmente, dalla seconda forma fondamentale della superficie. Le soluzioni, ottenute in corrispondenza di onde piane con profilo iniziale piatto, mostrano che il comportamento delle discontinuità indotte non è monotono ed é legato ai parametri che caratterizzano il materiale.
  相似文献   

15.
Two-dimensional stress waves in a general incompressible elastic solid are investigated. First, basic equations for simple waves and shock waves are presented for a general strain energy function. Then the characteristic wave speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock waves. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation the oblique reflection problem of a plane shock is not solvable in general.  相似文献   

16.
We investigate the initial value problem for the Einstein–Euler equations of general relativity under the assumption of Gowdy symmetry on T 3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein–Euler equations.  相似文献   

17.
The gas flow in plane shock waves slipping along an impermeable surface with a rectangular cavity where solid disperse particles are suspended is considered numerically. The motion of the gas and particles (gas suspension) is modeled by equations of mechanics of multiphase media. Some laws of the behavior of the dusty cloud in the cavity are established for the case of wave interaction with the cavity.  相似文献   

18.
In this paper, we develop a new hybrid Euler flux function based on Roe's flux difference scheme, which is free from shock instability and still preserves the accuracy and efficiency of Roe's flux scheme. For computational cost, only 5% extra CPU time is required compared with Roe's FDS. In hypersonic flow simulation with high‐order methods, the hybrid flux function would automatically switch to the Rusanov flux function near shock waves to improve the robustness, and in smooth regions, Roe's FDS would be recovered so that the advantages of high‐order methods can be maintained. Multidimensional dissipation is introduced to eliminate the adverse effects caused by flux function switching and further enhance the robustness of shock‐capturing, especially when the shock waves are not aligned with grids. A series of tests shows that this new hybrid flux function with a high‐order weighted compact nonlinear scheme is not only robust for shock‐capturing but also accurate for hypersonic heat transfer prediction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a family of High‐order finite volume schemes applicable on unstructured grids. The k‐exact reconstruction is performed on every control volume as the primary reconstruction. On a cell of interest, besides the primary reconstruction, additional candidate reconstruction polynomials are provided by means of very simple and efficient ‘secondary’ reconstructions. The weighted average procedure of the WENO scheme is then applied to the primary and secondary reconstructions to ensure the shock‐capturing capability of the scheme. This procedure combines the simplicity of the k‐exact reconstruction with the robustness of the WENO schemes and represents a systematic and unified way to construct High‐order accurate shock capturing schemes. To further improve the efficiency, an efficient problem‐independent shock detector is introduced. Several test cases are presented to demonstrate the accuracy and non‐oscillation property of the proposed schemes. The results show that the proposed schemes can predict the smooth solutions with uniformly High‐order accuracy and can capture the shock waves and contact discontinuities in high resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
溃坝问题是典型的非线性双曲方程的Riemann问题,其数值求解的难点在于对间断面的捕捉以及避免间断面处在数值计算过程中产生数值色散,因而为求解此问题所产生的各种数值计算方法的优劣也体现在这两个方面。本文针对溃坝问题提出一种新的计算方法。该方法基于对偶变量推导的浅水波方程,根据方程的特点,从方程的特征值和黎曼不变量出发,采用高精度的激波捕捉方法计算黎曼不变量的位置随时间的变化,然后映射至不随时间变化的固定网格。根据黎曼不变量的位置,采用保形分段三次Hermite插值将物理量映射至网格节点。计算结果显示,该方法不仅操作简单,计算量小,而且结果准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号