首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improved tanh function method [Chaos, Solitons & Fractals 2005;24:257] is further improved by constructing new ansatz solution of the considered equation. As its application, the (2 + 1)-dimensional Konopelchenko–Dubrovsky equations are considered and abundant new exact non-travelling wave solutions are obtained.  相似文献   

2.
In this paper, the F-expansion method is extended and applied to construct the exact solutions of the (2 + 1)-dimensional generalized Wick-type stochastic Kadomtsev–Petviashvili equation by the aid of the symbolic computation system Maple. Some new stochastic exact solutions which include kink-shaped soliton solution, singular soliton solution and triangular periodic solutions are obtained via this method and Hermite transformation.  相似文献   

3.
With the aid of Maple, several new kinds of exact solutions for the Broer–Kaup equations in (2 + 1)-dimensional spaces are obtained by using a new ansätz. This approach can also be applied to other nonlinear evolution equations.  相似文献   

4.
In this paper, with the aid of symbolic computation and a general ansätz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansätz. The method can also be applied to other nonlinear partial differential equations.  相似文献   

5.
In this paper, we construct new explicit exact solutions for the coupled the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation (KD equation) by using a improved mapping approach and variable separation method. By means of the method, new types of variable-separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) for the KD system are successfully obtained. The improved mapping approach and variable separation method can be applied to other higher-dimensional coupled nonlinear evolution equations.  相似文献   

6.
7.
In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons & Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained.  相似文献   

8.
More periodic wave solutions expressed by Jacobi elliptic functions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equations are obtained by using the extended F-expansion method. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained.  相似文献   

9.
Two isospectral problems are constructed with the help of a 6-dimensional Lie algebra. By using the Tu scheme, a (1 + 1)-dimensional expanding integrable couplings of the KdV hierarchy is obtained and the corresponding Hamiltonian structure is established. In addition, the 2-order matrix operators proposed by Tuguizhang are extended to the case where some 4-order matrices are given. Based on the extension, a new hierarchy of 2 + 1 dimensions is obtained by the Hamiltonian operator of the above (1 + 1)-dimensional case and the TAH scheme. The new hierarchy of 2 + 1 dimensions can be reduced to a coupled (2 + 1)-dimensional nonlinear equation and furthermore it can be reduced to the (2 + 1)-dimensional KdV equation which has important physics applications. The Hamiltonian structure for the (2 + 1)-dimensional hierarchy is derived with the aid of an extended trace identity. To the best of our knowledge, generating the (2 + 1)-dimensional equation hierarchies by virtue of the TAH scheme has not been studied in detail except to previous little work by Tu et al.  相似文献   

10.
In this paper, we present a further extended tanh method for constructing exact solutions to nonlinear difference-differential equation(s) (NDDEs) and Lattice equations. By using this method via symbolic computation system MAPLE, we obtain abundant soliton-like and period-form solutions to the (2 + 1)-dimensional Toda equation. Solitary wave solutions are merely a special case in one family. This method can also be used to other nonlinear difference differential equations.  相似文献   

11.
12.
In this paper, the new idea of a combination of Lie group method and homoclinic test technique is first proposed to seek non-traveling wave solutions of (2 + 1)-dimensional breaking soliton equation. The system is reduced to some (1 + 1)-dimensional nonlinear equations by applying the Lie group method and solves reduced equation with homoclinic test technique. Based on this idea and with the aid of symbolic computation, some new explicit solutions of similar systems can be obtained.  相似文献   

13.
用改进的双曲正切函数展开法,获得了(2+1)维耗散长波方程的由指数函数分别与三角函数和双曲函数组合的复合型新解.复合型新解中含有关于变量的任意函数.根据函数的任意性,借助符号计算系统Mathematica对解进行数值模拟,可以得到丰富的局域激发和分形结构.  相似文献   

14.
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of a projective Riccati equation approach, the paper obtains several types of exact solutions to the (2 + 1)-dimensional dispersive long wave (DLW) equation which include multiple soliton solution, periodic soliton solution and Weierstrass function solution. Subsequently, several multisolitons are derived and some novel features are revealed by introducing lower-dimensional patterns.  相似文献   

15.
Using homogeneous balance method we obtain Bäcklund transformation (BT) and a linear partial differential equation of higher-order Broer–Kaup equations. As a result, new soliton-like solutions and new dromion solution and other exact solutions of (2 + 1)-dimensional higher-order Broer–Kaup equations are given. By analyzing a soliton-like solution, we get some dromions solutions. This method, which can be generalized to some (2 + 1)-dimensional nonlinear evolution equations, is simple and powerful.  相似文献   

16.
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of a projective Riccati equation approach, the paper obtains several types of exact solutions to the (2 + 1)-dimensional dispersive long wave (DLW) equation which include multiple soliton solution, periodic soliton solution and Weierstrass function solution. Subsequently, several multisolitons are derived and some novel features are revealed by introducing lower-dimensional patterns.  相似文献   

17.
A higher loop algebra is constructed, from which the integrable couplings associated with the (2 + 1)-dimensional dispersive long wave hierarchy is obtained with the help of the (2 + 1) zero curvature equation generated from one of reduced equations of the self-dual Yang–Mills equations. Furthermore, the Hamiltonian structure of the integrable couplings is worked out by taking use of the variational identity.  相似文献   

18.
We explored and specialized new Lie infinitesimals for the (3 + 1)-dimensional B-Kadomtsev-Petviashvii (BKP) using the commutation product, which results a system of nonlinear ODEs manually solved. Through two stages of Lie symmetry reduction, (3 + 1)-dimensional BKP equation is reduced to nonsolvable nonlinear ODEs using various combinations of optimal Lie vectors. Using the integration and Riccati equation methods, we investigate new analytical solutions for these ODEs. Back substituting to the original variables generates new solutions for BKP. Some selected solutions illustrated through three-dimensional plots.  相似文献   

19.
An improved generalized F-expansion method is proposed to seek exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the (2 + 1)-dimensional KdV equations to illustrate the validity and advantages of the proposed method. Many new and more general non-travelling wave solutions are obtained, including single and combined non-degenerate Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, each of which contains two arbitrary functions.  相似文献   

20.
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansätz and is very powerful to uniformly construct more new exact doubly-periodic solutions in terms of rational formal Jacobi elliptic function of nonlinear evolution equations (NLEEs). As an application of the method, we choose a (1 + 1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号