首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrrolizidine alkaloids (PAs) are a large class of natural compounds amongst which the esterified 1,2-unsaturated necine base is toxic for humans and livestock. In the present study, a method was developed and validated for the screening and quantification of nine PAs and one PA N-oxide in teas (Camellia sinensis (L.) O. Kuntze) and herbal teas (camomile, fennel, linden, mint, rooibos, verbena). Samples were analysed by HPLC on a RP-column, packed with sub-2 μm core-shell particles, and quantified using tandem mass spectrometry operating in the positive electrospray ionisation mode. These PAs and some of their isomers were detected in a majority of the analysed beverages (50/70 samples). In 24 samples, PA concentrations were above the limit of quantification and the sum of the nine targeted PAs was between 0.021 and 0.954 μg per cup of tea. Thus, in some cases, total concentrations exceed the maximum daily intake recommended by the German Federal Institute for Risk Assessment and the UK’s Committee On Toxicity (i.e. 0.007 μg kg?1 bw). Graphical Abstract
?  相似文献   

2.
A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb2+ by exploiting the catalytic effect of Pb2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb2+ in real samples. Figure
?  相似文献   

3.
Although dried blood spot (DBS) sampling is increasingly receiving interest as a potential alternative to traditional blood sampling, the impact of hematocrit (Hct) on DBS results is limiting its final breakthrough in routine bioanalysis. To predict the Hct of a given DBS, potassium (K+) proved to be a reliable marker. The aim of this study was to evaluate whether application of an algorithm, based upon predicted Hct or K+ concentrations as such, allowed correction for the Hct bias. Using validated LC-MS/MS methods, caffeine, chosen as a model compound, was determined in whole blood and corresponding DBS samples with a broad Hct range (0.18–0.47). A reference subset (n?=?50) was used to generate an algorithm based on K+ concentrations in DBS. Application of the developed algorithm on an independent test set (n?=?50) alleviated the assay bias, especially at lower Hct values. Before correction, differences between DBS and whole blood concentrations ranged from ?29.1 to 21.1 %. The mean difference, as obtained by Bland-Altman comparison, was ?6.6 % (95 % confidence interval (CI), ?9.7 to ?3.4 %). After application of the algorithm, differences between corrected and whole blood concentrations lay between ?19.9 and 13.9 % with a mean difference of ?2.1 % (95 % CI, ?4.5 to 0.3 %). The same algorithm was applied to a separate compound, paraxanthine, which was determined in 103 samples (Hct range, 0.17–0.47), yielding similar results. In conclusion, a K+-based algorithm allows correction for the Hct bias in the quantitative analysis of caffeine and its metabolite paraxanthine. Graphical Abstract
Percentage differences between uncorrected DBS and whole blood paraxanthine concentrations (upper panel) and between corrected and whole blood paraxanthine concentrations (lower panel) (n = 103)  相似文献   

4.
In this study, the gas-phase fragmentations of protonated N-benzylbenzaldimines were investigated by electrospray ionization tandem mass spectrometry (ESI-MSn). Upon collisional activation, several characteristic fragment ions are produced and their fragmentation mechanisms are rationalized by electrophilic aromatic substitution accompanied by benzyl cation transfer. (1) For N-(p-methoxybenzylidene)-1-phenylmethanimine, concomitant with a loss of HCN, a product ion at m/z 121 was observed. It is proposed to be generated from electrophilic substitution at the ipso-position by transferring benzyl cation rather than cleavage of the C-N double bond. (2) For N-(m-methoxybenzylidene)-1-phenylmethanimine, a product ion at m/z 209 was obtained, corresponding to the elimination of NH3 carrying two hydrogens from the two aromatic rings respectively. This process can be rationalized by two sequential electrophilic substitutions and cyclodeamination reaction based on the benzyl cation transfer. Deuterium-labeled experiments, density functional theory (DFT) calculation and substituent effect results also corroborate the proposed mechanism. Figure a
?  相似文献   

5.
High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5?×?10?8 to 2.5?×?10?7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations. Figure
2D-HPLC separation and permanganate chemiluminescence detection of neurotransmitter metabolites  相似文献   

6.
A semiquantitative electrospray ionization mass spectrometry (ESI-MS) binding assay suitable for analyzing mixtures of oligosaccharides, at unknown concentrations, for interactions with target proteins is described. The assay relies on the differences in the ratio of the relative abundances of the ligand-bound and free protein ions measured by ESI-MS at two or more initial protein concentrations to distinguish low affinity (≤103 M–1) ligands from moderate and high affinity (>105 M–1) ligands present in the library and to rank their affinities. Control experiments were performed on solutions of a single chain antibody and a mixture of synthetic oligosaccharides, with known affinities, in the absence and presence of a 40-component carbohydrate library to demonstrate the implementation and reliability of the assay. The application of the assay for screening natural libraries of carbohydrates against proteins is also demonstrated using mixtures of human milk oligosaccharides, isolated from breast milk, and fragments of a bacterial toxin and human galectin 3. Graphical Abstract
?  相似文献   

7.
We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of ?0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s?1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM?1 cm?2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. Figure
Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx  相似文献   

8.
We present a novel lateral flow immunoassay (LFIA) for the simultaneous detection of the pesticides imidacloprid, chlorpyrifos-methyl and isocarbophos based on three competitive immunoreactions. In contrast to previously reported LFIAs, the method is based on the use of four strips. Each has three red channels (three test lines dispensed with different capture reagent) to detect imidacloprid, chlorpyrifos-methyl and isocarbophos respectively. Different channels on each strip are the key to multi-detection, and four strips of LFIA are needed for visual and semi-quantitative read-outs. Under optimized conditions, the LFIA was applied to the determination of three pesticides. The detection time is within 7 min and the detection limits are 50, 100, and 100 μg L?1, respectively. Furthermore, the LFIA was applied to the analysis of spiked Chinese cabbage and soil samples and results were validated by HPLC. Figure
Design of the Lateral Flow Immunoassay. The LFIA made up of four strips (Strip 1 to Strip 4), and each strip dispensed with three kinds of capture antigens on different channels (CH1 to CH3)  相似文献   

9.
An N-terminal deuterohemin-containing hexapeptide (DhHP-6) was designed as a short peptide cytochrome c (Cyt c) mimetic to study the effect of N-terminal charge on peptide fragmentation pathways. This peptide gave different dissociation patterns than normal tryptic peptides. Upon collision-induced dissociation (CID) with an ion trap mass spectrometer, the singly charged peptide ion containing no added proton generated abundant and characteristic bn-44 ions instead of bn-28 (an) ions. Studies by high resolution mass spectrometry (HRMS) and isotope labeling indicate that elimination of 44 Da fragments from b ions occurs via two different pathways: (1) loss of CH3CHO (44.0262) from a Thr side chain; (2) loss of CO2 (43.9898) from the oxazolone structure in the C-terminus. A series of analogues were designed and analyzed. The experimental results combined with Density Functional Theory (DFT) calculations on the proton affinity of the deuteroporphyrin demonstrate that the production of these novel bn-44 ions is related to the N-terminal charge via a charge-remote rather than radical-directed fragmentation pathway. Graphical Abstract
?  相似文献   

10.
This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS2 imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments. Fig. a
?  相似文献   

11.
The determination of the urinary vitamin D3 metabolites might prove helpful in the assessment of the vitamin D status. We developed a method for the determination of trace vitamin D3 metabolites, 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], in urine using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) combined with derivatization using an ESI-enhancing reagent, 4-(4′-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), and its isotope-coded analogue, 2H4-DAPTAD (d-DAPTAD). The urine samples were treated with β-glucuronidase, purified with an Oasis® hydrophilic–lipophilic balanced (HLB) cartridge, and then subjected to the derivatization. The DAPTAD derivatization enabled the highly sensitive detection (detection limit, 0.25 fmol on the column), and the use of d-DAPTAD significantly improved the assay precision [the intra- (n?=?5) and inter-assay (n?=?3) relative standard deviations did not exceed 9.5 %]. The method was successfully applied to urine sample analyses and detected the increases of the urinary 25(OH)D3 and 24,25(OH)2D3 levels due to vitamin D3 administration. Graphical Abstract
Scheme of procedure for urinary vitamin D3 metabolite analysis based on LC/MS/MS with ESI-enhancing and isotope-coded derivatization.  相似文献   

12.
Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe2+) the hydroxyl radical (?OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of ?OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L?1 and the detection limit for glucose is 0.1 μmol L?1. The method has been successfully used for analysis of glucose in human serum. Figure
?  相似文献   

13.
A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode. Graphical Abstract
?  相似文献   

14.
Electron flood guns used for charge compensation in secondary ion mass spectrometry (SIMS) cause chemical degradation. In this study, the effect of electron flood gun damage on argon cluster depth profiling is evaluated for poly(vinylcarbazole), 1,4-bis((1-naphthylphenyl)amino)biphenyl and Irganox 3114. Thin films of these three materials are irradiated with a range of doses from a focused beam of 20 eV electrons used for charge neutralization. SIMS chemical images of the irradiated surfaces show an ellipsoidal damaged area, approximately 3 mm in length, created by the electron beam. In depth profiles obtained with 5 keV Ar2000 + sputtering from the vicinity of the damaged area, the characteristic ion signal intensity rises from a low level to a steady state. For the damaged thin films, the ion dose required to sputter through the thin film to the substrate is higher than for undamaged areas. It is shown that a damaged layer is formed and this has a sputtering yield that is reduced by up to an order of magnitude and that the thickness of the damaged layer, which increases with the electron dose, can be as much as 20 nm for Irganox 3114. The study emphasizes the importance of minimizing the neutralizing electron dose prior to the analysis. Figure
?  相似文献   

15.
Hexafluoroisopropanol (HFIP)-induced coacervation in aqueous mixed systems of catanionic surfactants of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) was described in detail, and its application in the extraction of strongly polar sulfonamides (SAs) was investigated. With 10 % (v/v) HFIP inclusion, coacervation formation and two-phase separation occur in a wide range of SDS/DTAB mole ratios (88:12~0:100 mol/mol) and total surfactant concentrations (10~200 mmol/L). The interactions between HFIP and DTAB play an important role in coacervation formation. The HFIP-induced SDS–DTAB coacervation extraction proves to be an efficient method for the extraction and preconcentration of SAs. Both hydrophobic interaction and polar interactions (hydrogen–bond, electrostatic, and π-cation) contribute to the distribution of SAs into coacervate phase. The proposed HFIP-induced SDS–DTAB coacervation extraction combined with HPLC–UV was employed for the extraction and quantitative determination of SAs in environmental water samples. Limits of detection were 1.4~2.5 ng mL?1. Excellent linearity with correlation coefficients from 0.9990 to 0.9995 was obtained in the concentration of 0.01~10 μg mL?1. Relative recoveries were in the range of 93.4~105.9 % for analysis of the lake, underground, and tap water samples spiked with SAs at 0.01, 1.0, and 10 μg/mL, respectively. Relative standard deviations were 0.7~3.2 % for intraday precision and 1.3~4.6 % for interday precision (n?=?3). Concentration factors were 17~49 for three water samples spiked with 0.01 μg/mL SAs. The results demonstrate that the proposed extraction method is feasible for the preconcentration and determination of trace SAs in real water samples. Graphical abstract
?  相似文献   

16.
Liquid chromatography coupled to multistage mass spectrometry (LC-MSn) is being used increasingly in pharmaceutical research and for quality control in herbal medicines because of its superior sensitivity and selectivity. In this study, a rapid, high-resolution liquid chromatography-mass spectrometry (LC-MSn) method was developed to separate and identify alkaloids in the root extract of goldenseal, which is one of the 20 most popular herbal supplements used worldwide. In total, 28 alkaloids were separated and characterized including one novel compound and 21 identified, or tentatively identified, for the first time in goldenseal. The current high-resolution LC-MSn method provides a rapid and definitive means of profiling the composition of goldenseal root and will provide a useful tool in understanding the bioactivity of this medicinal plant.
Figure
Extraction and Orbitrap LC-MSn analysis of Goldenseal root for alkaloid identification  相似文献   

17.
High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants. Graphical Abstract
Representative figure of the identification and quantification process of cannabinoids  相似文献   

18.
Chemiluminescence-based bioassays have become increasingly important in clinical, pharmaceutical, environmental, and food safety fields owing to their high sensitivity, wide linear range, and simple instrumentation. During the past decade, it has been found that metal nanoparticles can initiate various liquid-phase chemiluminescence reactions as catalysts, reductants, energy acceptors, and nanosized reaction platforms owing to their unique optical, catalytic, and surface properties and chemical reactivity, which are very important for chemiluminescence bioassays based on metal nanoparticles as nanoprobes or a nanointerface. In this article, we summarize recent progress in metal-nanoparticle-initiated liquid-phase chemiluminescence, including reaction systems, mechanisms, and their applications in chemiluminescence-based bioassays, especially for immunoassays, DNA assays, aptamer-based assays, high-performance liquid chromatography or capillary electrophoresis analysis, and flow injection analysis. Figure
Comprehensive summary of metal nanoparticle (NP)-involved chemiluminescence (CL) systems and their applications. CE capillary electrophoresis, HPLC highperformance liquid chromatography  相似文献   

19.
Carbon/1-octadecanethiol-carboxylated multiwalled carbon nanotubes (cMWCNT) composite was used to construct a DNA sensor for detection of human bacterial meningitis caused by Neisseria meningitidis. The carbon composite electrode was used to covalently immobilize 5′-amine-labeled 19-mer single-stranded DNA (ssDNA) probe, which was hybridized with 1.35?×?102–3.44?×?104 pM (0.5–128 ng/5 μl) of single-stranded genomic DNA (ssG-DNA) of N. meningitidis for 10 min at room temperature (RT). The surface topography of the DNA sensor was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) while electrochemically characterized by electrochemical impedance. The immobilization of ssDNA probe and hybridization with ssG-DNA were detected electrochemically by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at RT in 30 min with a response time of 1 min. The DNA sensor showed high pathogenic specificity and can distinguish among complement, noncomplement, one base mismatch, and triple base mismatch oligomer targets. The limit of detection (LOD) and sensitivity of the sensor were approximately 68 pM and 38.095 (μA/cm2)/nM of ssG-DNA, respectively, using DPV. The improved sensitivity and LOD of the sensor can be attributed to the higher efficiency of probe immobilization due to high surface area-to-volume ratio and good electrical activity of cMWCNT. Figure
?  相似文献   

20.
A proficiency test for the analysis of pesticide residues in brown rice was carried out to support upgrading in analytical skills of participant laboratories. Brown rice containing three target pesticides (etofenprox, fenitrothion, and isoprothiolane) was used as the test samples. The test samples were distributed to the 57 participants and analyzed by appropriate analytical methods chosen by each participant. It was shown that there was no significant difference among the reported values obtained by different types of analytical method. The analytical results obtained by National Metrology Institute of Japan (NMIJ) were 3 % to 10 % greater than those obtained by participants. The results reported by the participant were evaluated by using two types of z-scores, that is, one was the score based on the consensus values calculated from the analytical results of participants, and the other one was the score based on the reference values obtained by NMIJ with high reliability. Acceptable z-scores based on the consensus values and NMIJ reference values were achieved by 87 % to 89 % and 79 % to 94 % of the participants, respectively. Graphical Abstract
Distribution of z and zNMIJ-scores for isoprothiolane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号