首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   

2.
Covalent labeling along with mass spectrometry is finding more use as a means of studying the higher order structure of proteins and protein complexes. Diethylpyrocarbonate (DEPC) is an increasingly used reagent for these labeling experiments because it is capable of modifying multiple residues at the same time. Pinpointing DEPC-labeled sites on proteins is typically needed to obtain more resolved structural information, and tandem mass spectrometry after protein proteolysis is often used for this purpose. In this work, we demonstrate that in certain instances, scrambling of the DEPC label from one residue to another can occur during collision-induced dissociation (CID) of labeled peptide ions, resulting in ambiguity in label site identity. From a preliminary study of over 30 labeled peptides, we find that scrambling occurs in about 25% of the peptides and most commonly occurs when histidine residues are labeled. Moreover, this scrambling appears to occur more readily under non-mobile proton conditions, meaning that low charge-state peptide ions are more prone to this reaction. For all peptides, we find that scrambling does not occur during electron transfer dissociation, which suggests that this dissociation technique is a safe alternative to CID for correct label site identification. Graphical Abstract
?  相似文献   

3.
Bonds that break in collision-induced dissociation (CID) are often weakened by a nearby proton, which can, in principle, be carried away by either of the product fragments. Since peptide backbone dissociation is commonly charge-directed, relative intensities of charge states of product y- and b-ions depend on the final location of that proton. This study examines y-ion charge distributions for dissociation of doubly charged peptide ions, using a large reference library of peptide ion fragmentation generated from ion-trap CID of peptide ions from tryptic digests. Trends in relative intensities of y2+ and y1+ ions are examined as a function of bond cleavage position, peptide length (n), residues on either side of the bond and effects of residues remote from the bond. It is found that yn-2/b2 dissociation is the most sensitive to adjacent amino acids, that y2+/y1+ steadily increase with increasing peptide length, that the N-terminal amino acid can have a major influence in all dissociations, and in some cases other residues remote from the bond cleavage exert significant effects. Good correlation is found between the values of y2+/y1+ for the peptide and the proton affinities of the amino acids present at the dissociating peptide bond. A few deviations from this correlation are rationalized by specific effects of the amino acid residues. These correlations can be used to estimate trends in y2+/y1+ ratios for peptide ions from amino acid proton affinities.  相似文献   

4.
Tandem mass spectra of peptide ions, acquired in shotgun proteomic studies of selected proteins, tissues, and organisms, commonly include prominent peaks that cannot be assigned to the known fragmentation product ions (y, b, a, neutral losses). In many cases these persist even when creating consensus spectra for inclusion in spectral libraries, where it is important to determine whether these peaks represent new fragmentation paths or arise from impurities. Using spectra from libraries and synthesized peptides, we investigate a class of fragment ions corresponding to yn-1 + 10 and yn-1 + 11, where n is the number of amino acid residues in the peptide. These 10 and 11 Da differences in mass of the y ion were ascribed before to the masses of [+ CO – H2O] and [+ CO – NH3], respectively. The mechanism is suggested to involve dissociation of the N-terminal residue at the CH-CO bond following loss of H2O or NH3. MS3 spectra of these ions show that the location of the additional 10 or 11 Da is at the N-terminal residue. The yn-1 + 10 ion is most often found in peptides with N-terminal proline, asparagine, and histidine, and also with serine and threonine in the adjacent position. The yn-1 + 11 ion is observed predominantly with histidine and asparagine at the N-terminus, but also occurs with asparagine in positions two through four. The intensities of the yn-1 + 10 ions decrease with increasing peptide length. These data for yn-1 + 10 and yn-1 + 11 ion formation may be used to improve peptide identification from tandem mass spectra.  相似文献   

5.
A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.
Figure
?  相似文献   

6.
A novel application of intramolecular base catalysis confers enhanced reaction rates for aminolysis ligations between peptide thioesters and peptides bearing N-terminal aspartate or glutamate residues. The broad scope of this process and its application in the total synthesis of the diabetes drug exenatide is demonstrated.  相似文献   

7.
8.
We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome.  相似文献   

9.
Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 – 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.
Figure
?  相似文献   

10.
The gas-phase peptide ion fragmentation chemistry is always the center of attraction in proteomics to analyze the amino acid sequence of peptides and proteins. In this work, we describe the formation of an anomalous fragment ion, which corresponds to the selective deletion of the internal lysine residue from a series of lysine containing peptides upon collisional activation in the ion trap. We detected several water-loss fragment ions and the maximum number of water molecules lost from a particular fragment ion was equal to the number of lysine residues in that fragment. As a consequence of this water-loss phenomenon, internal lysine residues were found to be deleted from the peptide ion. The N,N-dimethylation of all the amine functional groups of the peptide stopped the internal lysine deletion reaction, but selective N-terminal ??-amino acetylation had no effect on this process indicating involvement of the side chains of the lysine residues. The detailed mechanism of the lysine deletion was investigated by multistage CID of the modified and unmodified peptides, by isotope labeling and by energy resolved CID studies. The results suggest that the lysine deletion might occur through a unimolecular multistep mechanism involving a seven-membered cyclic imine intermediate formed by the loss of water from a lysine residue in the protonated peptide. This intermediate subsequently undergoes degradation reaction to deplete the interior imine ring from the peptide backbone leading to the deletion of an internal lysine residue.  相似文献   

11.
Abstract

Thin-layer chromatographic position matching combined with color matching appeared to be a convenient method for characterization of the products of individual synthetic reactions during the protease-catalyzed synthesis of Leu- and Met-enkephalin.  相似文献   

12.
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-CH-CONH- type, initially formed by N?Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]-ETD fragments containing Asp, Asn, Glu, and Gln residues.
Graphical Abstract ?
  相似文献   

13.
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym–1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.  相似文献   

14.
We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (?)-ESI-MS, CID-MS/MS, and MS3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO–C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids.
Graphical Abstract ?
  相似文献   

15.
With matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, total abundance of product ions formed by dissociation inside (in-source decay, ISD) and outside (post-source decay, PSD) the source was measured for peptide ions [Y 5 X + H]+, [XY 5 + H]+, [Y 2 XY 3 + H]+, and [XY 4 X + H]+ (X = tyrosine (Y), histidine (H), lysine (K), and arginine (R) with H for the ionizing proton). α-Cyano-4-hydroxycinammic acid was used as matrix. Product abundance became smaller in the presence of basic residues (H, K, and R), in the order Y > HK > R. In particular, product abundances in ISD of peptide ions with R were smaller than those with H or K by an order of magnitude, which, in turn, were smaller than that for [Y 6 + H]+ by an order of magnitude. Product abundance was affected by the most basic residue when more than one basic residue was present. A kinetic explanation for the data was attempted under the assumption of quasi-thermal equilibrium for peptide ions in MALDI plume which undergoes expansion cooling. Dramatic disparity in product abundance was found to arise from small difference in critical energy and entropy. Results indicate similar transition structures regardless of basic residues present, where the ionizing proton keeps interacting with a basic site. Further implication of the results on the dissociation mechanism along b-y channels is discussed.  相似文献   

16.
We report the effects of supercharging reagents dimethyl sulphoxide (DMSO) and m-nitrobenzyl alcohol (m-NBA) applied to untargeted peptide identification, with special emphasis on non-tryptic peptides. Peptides generated from a mixture of five standard proteins digested with trypsin, elastase, or pepsin were separated with nanoflow liquid chromatography using mobile phases modified with either 5% DMSO or 0.1%m-NBA. Eluting peptides were ionized by online electrospray and sequenced by both CID and ETD using data-dependent MS/MS. Statistically significant improvements in peptide identifications were observed with DMSO co-solvent. In order to understand this observation, we assessed the effects of supercharging reagents on the chromatographic separation and the electrospray quality. The increase in identifications was not due to supercharging, which was greater for the 0.1%m-NBA co-solvent and not observed for the 5.0% DMSO co-solvent. The improved MS/MS efficiency using the DMSO modified mobile phase appeared to result from charge state coalescence.  相似文献   

17.
Precise localization of post-translational modifications (PTMs) on proteins and peptides is an outstanding challenge in proteomics. While electron transfer dissociation (ETD) has dramatically advanced PTM analyses, mixtures of localization variants that commonly coexist in cells often require prior separation. Although differential or field asymmetric waveform ion mobility spectrometry (FAIMS) achieves broad variant resolution, the need for standards to identify the features has limited the utility of approach. Here we demonstrate full a priori characterization of variant mixtures by high-resolution FAIMS coupled to ETD and the procedures to systematically extract the FAIMS spectra for all variants from such data.
Graphical Abstract ?
  相似文献   

18.
[reaction in text] A thiol linker-attached peptide was prepared from a nonprotected peptide via an N(alpha)()-alpha-oxoacyl peptide. Selective oxidation of the N-terminal serine with sodium periodate gave the N(alpha)-glyoxyloyl peptide, reductive amination of which with 4,5-dimethoxy-2-(triphenylmethylthio)benzylamine gave an N(alpha)-4,5-dimethoxy-2-mercaptobenzyl glycyl peptide after removal of the trityl group. The N(alpha)-4,5-dimethoxy-2-mercaptobenzyl peptide can be condensed with a peptide thioester, and the linker is removable. This strategy provides a useful method for the synthesis of peptides using recombinant proteins.  相似文献   

19.
Differential ion mobility spectrometry (DIMS) devices separate ions on the basis of differences in ion mobility in low and high electric fields, and can be used as a stand-alone analytical method or as a separation step before further analysis. As with other ion mobility separation techniques, the ability of DIMS separations to retain the structural characteristics of analytes has been of concern. For DIMS separations, this potential loss of ion structure originates from the fact that the separations occur at atmospheric pressure and the ions, during their transit through the device, undergo repeated collisions with the DIMS carrier gas while being accelerated by the electric field. These collisions have the ability to increase the internal energy distribution of the ions, which can cause isomerization or fragmentation. The increase in internal energy of the ions is based on a number of variables, including the dispersion field and characteristics of the carrier gas such as temperature and composition. The effects of these parameters on the intra-DIMS fragmentation of multiply charged ions of the peptides bradykinin (RPPGFSPFR) and GLISH are discussed herein. Furthermore, similarities and differences in the internal energy deposition that occur during collisional activation in tandem mass spectrometry experiments are discussed, as the fragmentation pathways accessed by both are similar.
Graphical Abstract ?
  相似文献   

20.
Summary.  When 1-methoxy-2-naphthalene carboxylic acid diethylamide was reacted with tert-butyl lithium in presence of TMEDA and 3,5-dimethoxybenzaldehyde was subsequently added to the reaction mixture, (P, S/M, R)- and (P, R/M, S)-1-tert-butyl-3-((3,5-dimethoxyphenyl)-hydroxymethyl)-naphthalene-2-carboxylic acid diethylamide were formed instead of the corresponding 1-methoxy derivative. The diastereomeric relationship of the products is due to a sterically severely hindered rotation around the amide-aryl bond. Received May 11, 2001. Accepted May 18, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号