首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C?CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C?CO, C?N, and N?Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.
Graphical Abstract ?
  相似文献   

2.
A conventional electron capture dissociation (ECD) spectrum of a protein is uniquely characteristic of the first dimension of its linear structure. This sequence information is indicated by summing the primary c m+ and z m+? products of cleavage at each of its molecular ion’s inter-residue bonds. For example, the ECD spectra of ubiquitin (M?+?nH)n+ ions, n?=?7–13, provide sequence characterization of 72 of its 75 cleavage sites from 1843 ions in seven c (1–7)+ and eight z (1–8)+? spectra and their respective complements. Now we find that each of these c/z spectra is itself composed of “charge site (CS)” spectra, the c m+ or z m+? products of electron capture at a specific protonated basic residue. This charge site has been H-bonded to multiple other residues, producing multiple precursor ion forms; ECD at these residues yields the multiple products of that CS spectrum. Closely similar CS spectra are often formed from a range of charge states of ubiquitin and KIX ions; this indicates a common secondary conformation, but not the conventional α-helicity postulated previously. CS spectra should provide new capabilities for comparing regional conformations of gaseous protein ions and delineating ECD fragmentation pathways.
Figure
?  相似文献   

3.
Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the ‘cost’ of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10 + 3H]3+ and the reagent cluster [5R5Na – Na]). This type of gas-phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anion which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included as illustrative of the results obtained for the clusters comprised of two to six reagent molecules.
Figure
?  相似文献   

4.
The solution dependence of gas-phase unfolding for ubiquitin [M + 7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. Figure
?  相似文献   

5.
The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues. Graphical Abstract
?  相似文献   

6.
Differential mobility spectrometry (DMS) can distinguish ions based upon the differences in their high- and low-field ion mobilities as they experience the asymmetric waveform applied to the DMS cell. These mobilities are known to be influenced by the ions’ structure, m/z, and charge distribution (i.e., resonance structures) within the ions themselves, as well as by the gas-phase environment of the DMS cell. While these associations have been developed over time through empirical observations, the exact role of ion structures or their interactions with clustering molecules remains generally unknown. In this study, that relationship is explored by observing the DMS behaviors of a series of tetraalkylammonium ions as a function of their structures and the gas-phase environment of the DMS cell. To support the DMS experiments, the basin-hopping search strategy was employed to identify candidate cluster structures for density functional theory treatment. More than a million cluster structures distributed across 72 different ion-molecule cluster systems were sampled to determine global minimum structures and cluster binding energies. This joint computational and experimental approach suggests that cluster geometry, in particular ion-molecule intermolecular separation, plays a critical role in DMS. Figure
?  相似文献   

7.
A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb2+ by exploiting the catalytic effect of Pb2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb2+ in real samples. Figure
?  相似文献   

8.
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH4 +, and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li+ and Cs+, which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH4 + is nearly the same as that with Rb+ and K+, cations with similar GSFE and ionic radii. This indicates that proton transfer from NH4 + to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry.
Figure
?  相似文献   

9.
Collision-induced dissociation (CID) of electrosprayed protein complexes usually involves asymmetric charge partitioning, where a single unfolded chain gets ejected that carries a disproportionately large fraction of charge. Using hemoglobin (Hb) tetramers as model system, we confirm earlier reports that bound metal ions can stabilize protein complexes under CID conditions. We examine the mechanism underlying this effect. Nonvolatile salts cause extensive adduct formation. Significant stabilization was observed for Mg2+ and Ca2+, whereas K+, Rb+, and Cs+ had no effect. Precursor ion selection was used to examine Hb subpopulations with well-defined metal binding levels. K+, Rb+, and Cs+-adducted tetramers eject monomers that carry roughly one-quarter of the metal ions that were bound to the precursor. This demonstrates that charge migration during CID is exclusively due to proton transfer, not metal ion transfer. Also, replacement of highly mobile charge carriers (protons) with less mobile species (metal ions) does not exert a stabilizing influence under the conditions used here. Interestingly, Hb carrying stabilizing ions (Mg2+ and Ca2+) generates monomeric CID products that are metal depleted. This effect is attributed to a combination of two factors: (1) Me2+ binding stabilizes Hb via formation of chelation bridges (e.g., R-COO Me2+ OOC-R); the more Me2+ a subunit contains the more stable it is. (2) More than ~90 % of the tetramers contain at least one subunit with a below-average number of Me2+. The prevalence of monomeric CID products with depleted Me2+ levels is caused by the tendency of these low metal-containing subunits to undergo preferential unfolding/ejection.
Figure
?  相似文献   

10.
The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K+ and Ca2+ were used as charge carriers to form multiply-charged metal–peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z? fragment complex, in which the c' and z? fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z? fragment complex, eventually generating c? and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of “proton-removed” precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.
Figure
?  相似文献   

11.
Top-down analyses of protonated insulin cations of charge states of 4+, 5+, or 6+ were performed by exposing the isolated precursor ions to a beam of helium cations with kinetic energy of more than 6 keV, in a technique termed charge transfer dissociation (CTD). The ~100 ms charge transfer reaction resulted in approximately 20% conversion efficiency to other intact charge exchange products (CTnoD), and a range of low abundance fragment ions. To increase backbone and sulfide cleavages, and to provide better structural information than straightforward MS2 CTD, the CTnoD oxidized products were isolated and subjected to collisional activation at the MS3 level. The MS3 CTD/CID reaction effectively broke the disulfide linkages, separated the two chains, and yielded more structurally informative fragment ions within the inter-chain cyclic region. CTD also provided doubly oxidized intact product ions at the MS2 level, and resonance ejection of the singly oxidized product ion revealed that the doubly oxidized product originates directly from the isolated precursor ion and not from consecutive CTD reactions of a singly oxidized intermediate. MS4 experiments were employed to help identify potential radical cations and diradical cations, but the results were negative or inconclusive. Nonetheless, the two-electron oxidation process is a demonstration of the very large potential energy (>20 eV) available through CTD, and is a notable capability for a 3D ion trap platform.
Graphical Abstract ?
  相似文献   

12.
We present results showing that our recently developed density functional theory (DFT)-based speciation model of the aqueous Al3+ system has the potential to improve the interpretations of ESI-MS studies of aqueous metal cation hydrolytic speciation. The main advantages of our method are that (1) it allows for the calculation of the relative abundance of a given species which may be directly assigned to the signal intensity in a mass spectrum; (2) in cases where species with identical m?z ratios may coexist, the assignment can be unambiguously assigned based on their theoretical relative abundances. As a demonstration of its application, we study four pairs of monomer and dimer aqueous Al3+ species, each with identical m/z ratio. For some of these pairs our method predicts that the dominant species changes from the monomer to the dimer species under varying pH conditions.
Figure
?  相似文献   

13.
The fragmentation patterns of a group of doubly protonated ([P + 2H]2+) and mixed protonated-sodiated ([P + H + Na]2+) peptide-mimicking oligomers, known as peptoids, have been studied using electron capturing dissociation (ECD) tandem mass spectrometry techniques. For all the peptoids studied, the primary backbone fragmentation occurred at the N-Cα bonds. The N-terminal fragment ions, the C-ions (protonated) and the C′-ions (sodiated) were observed universally for all the peptoids regardless of the types of charge carrier. The C-terminal ions varied depending on the type of charge carrier. The doubly protonated peptoids with at least one basic residue located at a position other than the N-terminus fragmented by producing the Z?-series of ions. In addition, most doubly protonated peptoids also produced the Y-series of ions with notable abundances. The mixed protonated-sodiated peptoids fragmented by yielding the Z?′-series of ions in addition to the C′-series. Chelation between the sodium cation and the amide groups of the peptoid chain might be an important factor that could stabilize both the N-terminal and the C-terminal fragment ions. Regardless of the types of the charge carrier, one notable fragmentation for all the peptoids was the elimination of a benzylic radical from the odd-electron positive ions of the protonated peptoids ([P + 2H]?+) and the sodiated peptoids ([P + H + Na]?+). The study showed potential utility of using the ECD technique for sequencing of peptoid libraries generated by combinatorial chemistry.
Figure
?  相似文献   

14.
Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a traveling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions.
?  相似文献   

15.
An N-terminal deuterohemin-containing hexapeptide (DhHP-6) was designed as a short peptide cytochrome c (Cyt c) mimetic to study the effect of N-terminal charge on peptide fragmentation pathways. This peptide gave different dissociation patterns than normal tryptic peptides. Upon collision-induced dissociation (CID) with an ion trap mass spectrometer, the singly charged peptide ion containing no added proton generated abundant and characteristic bn-44 ions instead of bn-28 (an) ions. Studies by high resolution mass spectrometry (HRMS) and isotope labeling indicate that elimination of 44 Da fragments from b ions occurs via two different pathways: (1) loss of CH3CHO (44.0262) from a Thr side chain; (2) loss of CO2 (43.9898) from the oxazolone structure in the C-terminus. A series of analogues were designed and analyzed. The experimental results combined with Density Functional Theory (DFT) calculations on the proton affinity of the deuteroporphyrin demonstrate that the production of these novel bn-44 ions is related to the N-terminal charge via a charge-remote rather than radical-directed fragmentation pathway. Graphical Abstract
?  相似文献   

16.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   

17.
We report an extremely sensitive and specific detection of mercuric ions (Hg2+) based on graphene assisted laser desorption/ionization mass spectrometry (GALDI-MS). Combining the highly selective coordination interactions between thymine (T) and Hg2+, we present a simple, effective, and novel approach, based on π–π interactions of the T-Hg2+-T complex and G that can serve as a platform and matrix for GALDI-MS. The present sensor not only exhibits high selectivity and sensitivity (picomolar) to Hg2+ in aqueous solution, but also can elucidate the chemical structures of the metal complexes. The significant advantage in the current approach is that there is no need for a sophisticated instrument, and no sample pretreatment is required to detect the Hg2+ ions.
Figure
?  相似文献   

18.
The fragmentations of [AA + M]+ complexes, where AA = Phe, Tyr, Trp, or His, and M is a monovalent metal (Li, Na, or Ag), have been exhaustively studied through collision-induced dissociation (CID) and through deuterium labeling. Dissociations of the Li- and Ag-containing complexes gave a large number of fragment ions; by contrast, the sodium/amino acid complexes have lower binding energies, and dissociation resulted in much simpler spectra, with loss of the entire ligand dominating. Unambiguous assignments of these fragment ions were made and formation mechanisms are proposed. Of particular interest are fragmentations in which the charge was retained on the organic fragment and the metal was lost, either as a metal hydride (AgH) or hydroxide (LiOH) or as the silver atom (Ag?).
Caption for Graphical Abstract
CID products of Li+, Na+, and Ag+ complexes of Phe, Tyr, Trp, and His are reported and mechanisms by which they are formed are proposed.  相似文献   

19.
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.
Figure
?  相似文献   

20.
We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [?SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases. Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号