首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Chinese phytomedicinal formulation Sanqi Zongdai Pian, traditionally prepared from crude extracts from roots of Panax notoginseng (Araliaceae), contains highly polar dammarane saponins which were separated at a preparative scale using high-speed counter-current chromatography (HSCCC). In each operation, 283 mg methanolic extract of five tablets was separated and yielded pure 157, 17, 13 and 56 mg of ginsenoside-Rb1, notoginsenoside-R1, ginsenoside-Re and ginsenoside-Rg1, respectively, n-hexane-n-butanol-water (3:4:7, v/v/v) was used for the two-phase solvent system of the HSCCC separation. The chemical structures of three ginsenosides and one notoginsenoside were elaborated by means of electrospray ionization MS-MS and NMR analysis.  相似文献   

2.
Glycyrrhizin is one of the main bioactive components in liquorice (Glycyrrhiza uralensis Fisch) which has recently been found to be highly active in inhibiting replication of the severe acute respiratory syndrome (SARS)-associated virus. The separation and purification of glycyrrhizin from a methanol-water (70:30 (v/v)) extract of liquorice roots was achieved using high-speed counter-current chromatography. The separation was performed at a preparative scale in a one-step separation with a two-phase solvent system composed of ethyl acetate-methanol-water (5:2:5 (v/v)). The lower phase was used as the mobile phase in the head-to-tail elution mode. The present method yielded 42.2 mg glycyrrhizin at 96.8% purity from 130 mg of the crude exact with 95.2% recovery as determined by HPLC analysis.  相似文献   

3.
The bioactive compound shikonin was successfully isolated and purified from the crude extract of the traditional Chinese medicinal plant Lithospermum erythrorhizon Sieb. et Zucc. by preparative high-speed counter-current chromatography (HSCCC). The preparative HSCCC was performed using a two-phase solvent system composed of n-hexane-ethylacetate-ethanol-water (16:14:14:5 (v/v)). A total amount of 19.6 mg of shikonin at 98.9% purity was obtained from 52 mg of the crude extract (containing 38.9% shikonin) with 96.9% recovery. The preparative isolation and purification of shikonin by HSCCC was completed in 200 min in a one-step separation.  相似文献   

4.
High-speed counter-current chromatography was successfully applied for the first time to the isolation and purification of the bioactive carotenoid zeaxanthin from the cyanobacterium Microcystis aeruginosa. The crude zeaxanthin was obtained by extraction with organic solvents after the microalgal sample had been saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (8:2:7:3, v/v/v/v) was successfully performed yielding zeaxanthin at 96.2% purity from 150 mg of the crude extract in a one-step separation. The recovery of zeaxanthin was 91.4%. This was also the first report that zeaxanthin was successfully separated and purified from microalgae.  相似文献   

5.
The bioactive compound syringin along with edgeworoside C were separated from the n-butanol extract of the stems and barks of Edgeworthia chrysantha Lindl (E. papyrifera) by high-speed counter-current chromatography (HSCCC) while it was difficult to purify each compound by silica gel column chromatography. Syringin was isolated from this plant for the first time. The two-phase solvent system used was composed of ethyl acetate-ethanol-water at an optimized volume ratio of 15:1:15 (v/v/v). Preparative HSCCC yielded, from 110mg of the partially purified extract, 28mg of syringin and 45 mg edgeworoside C each at over 96% purity by high-performance liquid chromatography analysis. Their structures were identified by electron impact ionization MS, 1H NMR and 13C NMR.  相似文献   

6.
High-speed counter-current chromatography (HSCCC) was applied to the isolation and purification of geniposide from Gardenia jasminoides Ellis. Analytical HSCCC was used for the preliminary selection of a suitable solvent system composed of ethyl acetate-n-butanol-water (2:1:3, v/v/v). According to the above solvent system, preparative HSCCC was successfully performed with the optimal solvent system composed of ethyl acetate-n-butanol-water (2:1.5:3, v/v/v) yielding 389 mg of geniposide at over 98% purity from 1g of the partially purified extract with 38.9% recovery in a one-step separation.  相似文献   

7.
Recently, intermittent counter-current extraction (ICcE) has been developed and shown its advantage in improving resolution between targeted compounds. However, how to choose suitable parameters to increase the throughput has not been systematically studied yet. In present work, we first calculated theoretically the conditions to carry out ICcE elution mode. Then, honokiol and magnolol were separated as model compounds using ICcE elution mode to confirm our conclusion. After parameters like sample concentration and sample feed were optimized in analytical high-performance counter-current chromatography (HPCCC), the separation process was scaled up to preparative HPCCC successfully. 12.8 g honokiol and 16.1 g magnolol were separated from 30 g mixture with purities of 98.6% and 93.7%. And the throughput of target isolation of ICcE elution mode was at least 3.75× higher than isocratic elution mode with the same HPCCC instruments. Our results confirmed our theory calculation and demonstrated the enormous potential of ICcE on preparative separation of binary mixture.  相似文献   

8.
The hydrophobic ionic liquid of [BMIM][PF6] was successfully used for the ultrasound‐assisted extraction of hydrophobic magnolol and honokiol from cortex Magnoliae officinalis. To obtain the best extraction efficiencies, some ultrasonic parameters including the concentration of [BMIM][PF6], pH, ultrasonic power and ultrasonic time were evaluated. The results obtained indicated that the [BMIM][PF6]‐based ultrasound‐assisted extraction efficiencies of magnolol and honokiol were greater than those of the [BMIM][BF4]‐based ultrasound‐assisted extraction (from 48.6 to 45.9%) and the traditional ethanol reflux extraction (from 16.2 to 13.3%). Furthermore, the proposed extraction method is validated by the recovery, correlation coefficient (R2) and reproducibility (RSD, n=5), which were 90.8–102.6, 0.9992–0.9998, and 1.6–5.4%, respectively.  相似文献   

9.
Preparative high-speed counter-current chromatography (HSCCC) was successfully used for isolation and purification of osthol and xanthotoxol from Cnidium monnieri (L.) Cusson (Common Cnidium Fruit) using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v), and (5:5:6:4, v/v), which had been selected by analytical high-speed counter-current chromatography. Using a preparative unit of the HSCCC centrifuge, about a 308 mg amount of the crude extract was separated, yielding 88.3 mg of osthol and 19.4 mg of xanthotoxol at a high purity of over 98%.  相似文献   

10.
A high-speed counter-current chromatography (HSCCC) method was developed for the preparative separation and purification of bergapten and imperatorin from the Chinese medicinal plant Cnidium monnieri (L.) Cusson. The crude extract was obtained by extraction with ethanol from the dried fruits of Cnidium monnieri (L.) Cusson under sonication. Preparative HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (5:5:5:5, v/v/v/v) was successfully performed by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml min(-1) after 180 min. The components purified and collected were analyzed by high-performance liquid chromatography. The method yielded 45.8 mg of bergapten at 96.5% purity and 118.3 mg of imperatorin at 98.2% purity from 500 mg of the crude extract in a single run. The recoveries of bergapten and imperatorin were 92.1 and 93.7%, respectively.  相似文献   

11.
A comparative study of preparative isolation and purification of the phenolic compounds magnolol and honokiol from the Chinese medicinal plant Magnoliae officinalis by upright counter-current chromatography (CCC) and semi-preparative HPLC is presented. The comparison reveals that with a two-phase solvent system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v), 1250 mg of honokiol and 520 mg of magnolol, with a purity of 98.7 and 99.5%, respectively, were obtained from 2.0 g of a crude sample of Magnoliae officinalis in a single CCC separation. In contrast, semi-preparative HPLC allowed isolation and purification of these two phenolic compounds with significantly lower productivity and higher solvent consumption. Structures of the purified compounds were identified by 1H and 13C NMR.  相似文献   

12.
Three flavonoid glycosides including orientin, vitexin, quercetin-3-O-neohesperidoside and one unknown compound were isolated and purified by high-speed counter-current chromatography (HSCCC) and semi-preparative HPLC from Trollius ledebouri Reichb., a traditional Chinese medicine. Preparative HSCCC with a two-phase solvent system composed of ethyl acetate-n-butanol-water (2:1:3, v/v/v) was successfully performed by increasing the flow-rate of the mobile phase from 1.5 to 2.5 ml/min after 190 min. Consequently, 95.8 mg orientin, 11.6 mg vitexin, 9.3 mg unknown compound with purities of over 97% and one partially purified peak fraction (contained quercetin-3-O-neohesperidoside at 85.1% purity) were obtained from 500 mg of the crude extract. Then the partially purified fraction was further purified by reversed-phase semi-preparative high-performance liquid chromatography. The structure identification of all pure fractions was carried out by UV, MS, 1H NMR and 13C NMR.  相似文献   

13.
(3R)-(-)-7,2'-Dihydroxy-3',4'-dimethyl isoflavan-7-O-beta-D-glucopyranoside and (6aR, 11aR) 9,10-di-methoxypterocarpan-3-O-beta-D-glucopyranoside were separated from the ethyl acetate extract of the root of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography (HSCCC). A two-phase system composed of ethyl acetate-ethanol-acetic acid-water (4:1:0.25:5, v/v) was selected by analytical HSCCC. Preparative HSCCC yielded, from 100 mg of the partially purified extract, 50 mg of isoflavan glycoside and 10 mg of pterocarpan glycoside each at over 95% purity by high-performance liquid chromatography (HPLC) analysis. Their structures were identified by MS, 1H NMR and 13C NMR.  相似文献   

14.
High-speed counter-current chromatography (HSCCC) was successfully used for the isolation and purification of coumarin compounds from Cortex fraxinus, the Chinese herbal drug. n-Butanol-methanol-0.5% acetic acid (5:1.5:5, v/v) was used as the two-phase solvent system. 14.3 mg of fraxin, 26.5 mg of aesculin, 5.8 mg of fraxetin and 32.4 mg of aesculetin with the purity of 97.6, 99.5, 97.2 and 98.7%, respectively were obtained from 150 mg of crude extracts of C. fraxinus in a single run. The structures of the isolated compounds were identified by 1H NMR and 13C NMR.  相似文献   

15.
This paper describes the application of high-performance counter-current chromatography (HPCCC) as a fast, useful and economic alternative for the separation and purification of seven honokiol derivatives (two of them are isomers), which were synthesized by a one-pot procedure. Five honokiol derivatives were successfully separated by n-hexane–ethyl acetate–methanol–water solvent system at three different volume ratios in a step-gradient elution. Two derivatives were obtained through a cycle elution mode. The whole separation process produced 366.3 mg, 323.6 mg, 242.8 mg, 216.2 mg, 203.5 mg, 185.8 mg and 279.3 mg of 3′-formylhonokiol (1), 2′-methoxy-3′-formylhonokiol (2), 2′-methoxyhonokiol (3), 4-methoxyhonokiol (4), 3′,5-diformylhonokiol (5), 2′,4-dimethoxy-3′-formylhonokiol (6) and 2′,4-dimethoxyhonokiol (7) from crude sample of 3 g with purities of 98.7%, 99.3%, 98.6%, 98.2%, 99.0%, 98.4% and 99.2%, respectively. The purities and structural identification were determined by HPLC, 1H NMR, 13C NMR and mass spectroscopy.  相似文献   

16.
In this paper, a rapid separation approach has been developed using high-capacity high-speed counter-current chromatography (high-capacity HSCCC) to isolate and purify honokiol and magnolol, which are the main bioactive constituents from Houpu. The optimization of the solvent selection process, sample loading volume and flow rate is systematically studied using analytical high-capacity HSCCC. The optimized parameters obtained rapidly at analytical scale were used for a 1000 x scale-up preparative run using pilot scale high-capacity HSCCC in a MAXI-DE centrifuge. A crude sample of 43 g was successfully separated and the fractions were analysed by high-performance liquid chromatography (HPLC). This large scale preparative single step run yielded 16.9 and 19.4 g of honokiol and magnolol with purities of 98.6 and 99.9%, in only 20 min. This is the first time that high-performance counter-current chromatography has been used to purify multiple gram grade bioactive compounds in less than 1h and at such high concentrations of final products (10.8 g/l for magnolol and 7.0 g/l for honokiol).  相似文献   

17.
Wu X  Chen X  Hu Z 《Talanta》2003,59(1):115-121
A high-performance liquid chromatographic (HPLC) method is described for the simultaneous determination of honokiol and magnolol in rat plasma. The plasma was deproteinized with acetonitrile which contained an internal standard (diphenyl) and was separated from the aqueous layer by adding sodium chloride. Honokiol and magnolol are extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC and ultraviolet detection. The limits of quantitation for honokiol and magnolol were 13 and 25 ng ml−1 in plasma, respectively, and recovery of both analytes was greater than 93%. The assay was linear from 20 to 200 ng ml−1 for honokiol and from 40 to 400 ng ml−1 for magnolol. Variation over the range of the standard curve was less than 15%. The method was used to determine the concentration-time profiles of honokiol and magnolol in the plasma following rectal administration of Houpo extract at a dose of 245 mg kg−1, equivalent to 13.5, 24.4 mg kg−1 of honokiol and magnolol, respectively.  相似文献   

18.
Preparative separation of flavonoid glycosides in leaves extract of Ampelopsis grossedentata was conducted using high-speed counter-current chromatograph (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:6:1.5:7.5, v/v). In a single operation, 28 mg of 5,7-dihydroxy-3',4'-trihydroxyflavone-3-O-6'-rhamnose and 18 mg of 5,7-dihydroxy-3',4'-dihydroxyflavone-3-O-6'-rhamnose was obtained from 150 mg of the extract. The chemical structure of the two compounds was elucidated by electrospray ionization (EIS) MS and NMR.  相似文献   

19.
A new counter-current chromatography (CCC) method with an upright coil planet centrifuge, which holds four identical multilayer coil columns in the symmetrical positions around the centrifuge axis, was applied to the isolation and purification of celastrol from the roots of Celastrus orbiculatus Thunb. The crude celastrol was obtained by elution with light petroleum from ethanol extracts using 15 cm x 5 cm i.d. silica gel flash chromatography. Preparative CCC with a two-phase system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v) was successfully performed, yielding 798 mg celastrol at 99.5% purity from 1020 mg of the crude sample in one step separation.  相似文献   

20.
Thirteen new glucosides (113) of magnolol and honokiol were obtained from specific O-glycosylation by two filamentous fungi, Cunninghamella echinulata AS 3.3400 and Rhizopus japonicus ZW-4. The glucosides' structures were determined on the basis of extensive spectroscopic (HRESIMS, 1D and 2D NMR, and CD) analyses and a chemical method. C. echinulata appeared to transfer a glucosyl moiety to 2-OH of magnolol and honokiol, whereas R. japonicus preferred to regio-specifically transfer a glucosyl moiety to 4′-OH when honokiol was as the substrate. In addition, hydroxylation by C. echinulata and specific 6″-O-acylation of the introduced glucosyl moiety by R. japonicus were observed as minor reactions. Bioassay results indicated that glucosides 112 together with magnolol and honokiol at 10 μM attenuated the glutamate-induced toxicity in SK-N-SH cells to levels comparable to the results for MK-801, a positive control. However, the water-solubility of major glucosylated products (1, 8, and 11) increased greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号