首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A nonlinear deformation model for a rod with rigid cross sections is proposed. A complete system of local incremental equations, a variational equation equivalent to this system, and an equation of virtual work are formulated. Numerical analysis of the deformation of a ring transmission is performed. Institute of Computer Modeling, Siberian Division, Russian Academy of Sciences, Krasnoyarsk 660036. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 229–235, July–August, 1999.  相似文献   

2.
The studies on the deformation and short-term damage of physically nonlinear homogeneous and composite materials are systemized. A single microdamage is modeled by an empty quasispherical pore in place of a microvolume damaged in accordance with the Huber–von Mises failure criterion. The ultimate microstrength is assumed to be a random function of coordinates. The porosity balance equation is derived. Together with the macrostress–macrostrain relationship, it constitutes a closed-form system of equations. The damage–macrostrain relationship and macrostress–macrostrain curves for homogeneous and composite materials are analyzed  相似文献   

3.
A structural theory of short-term microdamage is proposed for a two-component laminated composite with microdamageable reinforcement and physically nonlinear matrix. The basis of the theory is the stochastic elasticity equations of a laminated composite with a porous reinforcement. Microvolumes in the reinforcement material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the reinforcement is derived. This equation and the equations relating macrostresses and macrostrains of a laminated composite with porous reinforcement and physically nonlinear matrix constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different composite components. Algorithms for computing the microdamage-macrostrain relationships and deformation diagrams are developed. Uniaxial tension curves are plotted for a laminated composite with linearly hardening matrix __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 3–12, December 2005.  相似文献   

4.
The structural theory of short-term microdamage is generalized to a laminated composite with a microdamageable matrix and physically nonlinear reinforcement. The basis for the generalization is the stochastic elasticity equations of a laminated composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a laminated composite with porous matrix and physically nonlinear reinforcement constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different composite components. Algorithms for computing the microdamage-macrostrain relationships and deformation diagrams are developed. Uniaxial tension curves are plotted for a laminated composite with linearly hardening reinforcement __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 47–56, November 2005.  相似文献   

5.
A structural theory of short-term microdamage is proposed for a fibrous composite with physically nonlinear matrix and microdamaged reinforcement. The theory is based on the stochastic elasticity equations of a fibrous composite with porous fibers. Microvolumes of the fiber material are damaged in accordance with the Huber-Mises failure criterion. A balance equation for damaged microvolumes in the reinforcement is derived. This equation together with the equations relating macrostresses and macrostrains of a fibrous composite with porous reinforcement and physically nonlinear matrix constitute a closed-form system. This system describes the coupled processes of physically nonlinear deformation and microdamage that occur in different components of the composite. Algorithms are proposed for computing the dependences of microdamage on macrostrains and macrostresses on macrostrains. Uniaxial tension curves are plotted for a fibrous composite with a linearly hardening matrix __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 3–13, February 2006.  相似文献   

6.
A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff-Love hypotheses is considered. Strain relations, which adequately describe the deformation of the element with finite bending of its middle surface, are obtained by integrating the differential equation of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is developed for calculating the coefficients of the first and second variations of the strain energy, which are used to formulate the conditions of equilibrium and stability of the discrete model of the shell. Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear deformation of elastic plates and shells. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 160–172, September–October, 2007.  相似文献   

7.
The structural theory of short-term microdamage is generalized to a fibrous composite with a microdamageable matrix and physically nonlinear fibers. The basis for the generalization is the stochastic elasticity equations of a fibrous composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a fibrous composite with porous matrix and physically nonlinear fibers constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different components of the composite. Algorithms for computing the microdamage-macrostrain and macrostress-macrostrain relationships are developed. Uniaxial tension curves are plotted for a fibrous composite with linearly hardening fibers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 38–47, January 2006.  相似文献   

8.
In this paper, the Exp-function method with the aid of the symbolic computational system Maple is used to obtain the generalized solitonary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics, namely, (2+1)-dimensional Konopelchenko–Dubrovsky equations, the (3+1)-dimensional Jimbo–Miwa equation, the Kadomtsev–Petviashvili (KP) equation, and the (2+1)-dimensional sine-Gordon equation. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.  相似文献   

9.
A method is proposed for constructing a system of constitutive equations of an incompressible medium with nonlinear dissipative properties with finite deformations. A scheme of the mechanical behavior of a material is used, in which the points are connected by horizontally aligned elastic, viscous, plastic, and transmission elements. The properties of each element of the scheme are described with the use of known equations of the nonlinear elasticity theory, the theory of nonlinear viscous fluids, and the theory of plastic flow of the material under conditions of finite deformations of the medium. The system of constitutive equations is closed by equations that express the relation between the deformation rate tensor of the material and the deformation rate tensor of the plastic element. Transmission elements are used to take into account a significant difference between macroscopic deformations of the material and deformations of elements of the medium at the structural level. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 158–170, May–June, 2009.  相似文献   

10.
11.
In this paper the post-critical behavior of beam columns with variable mass and stiffness properties subjected to follower forces arbitrarily distributed along their length in the presence of damping (both internal and external) is investigated using a complete nonlinear dynamic analysis. Although the static nonlinear analysis is more economical in computational cost, it is associated only with the loss of local stability via flutter or divergence. Thus, the nonlinear dynamic analysis is adopted in order to examine the global stability of the system. The governing equations of hyperbolic type are derived in terms of the displacements by considering (a) nonlinear response including the axial deformation, (b) nonlinear response excluding the axial deformation and (c) linear response. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients. Their solution is achieved using the analog equation method (AEM) of Katsikadelis. Besides its accuracy and effectiveness, this method overcomes the shortcoming of a possible FEM solution which may experience a lack of convergence. The problems treated in this investigation include beam columns with various load distributions, such as constant, linear and parabolic. Some of the conclusions detected in studying the nonlinear dynamic stability of Beck’s column with variable cross section (Katsikadelis and Tsiatas, Nonlinear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-linear Mech. 42, 164–171, 2007), are also valid for the case of distributed loads. The important, however, finding is that the post-critical response under distributed loads depends on the law of distribution of mass and stiffness properties, which may lead also to explosive flutter (unbounded amplitude), in contrast to Beck’s column (end-tip load) where the motion is always bounded.  相似文献   

12.
The multiple scale expansion method is used to derive amplitude equations for a system with thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a Newell-Whitehead-type equation, and an equation of the ϕ4 type, respectively, were obtained. Analytic expressions for the coefficients of these equations and their various asymptotic forms are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude equation reduces to a perturbed nonlinear Shroedinger equation. In the high-frequency limit, structures of the type of “dark” solitons are characteristic of the examined physical system. Pacific Ocean Institute, Vladivostok 690041. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 56–66, May–June, 2000.  相似文献   

13.
A tensor–matrix FEM equation describing large-strain deformation is derived. The equation is simplified and modified to describe the deformation of incompressible materials. The results of test analysis are presented  相似文献   

14.
We extend our result Nakanishi and Schlag in J. Differ. Equ. 250(5):2299–2333, 2011) to the non-radial case, giving a complete classification of global dynamics of all solutions with energy that is at most slightly above that of the ground state for the nonlinear Klein–Gordon equation with the focusing cubic nonlinearity in three space dimensions.  相似文献   

15.
The structural theory of short-term damage is used to study the coupled processes of deformation and microdamage of a physically nonlinear material in a combined stress state. The basis for the analysis is the stochastic elasticity equations for a physically nonlinear porous medium. Damage in a microvolume of the material is assumed to occur in accordance with the Huber-Mises failure criterion. The balance equation for damaged microvolumes is derived and added to the macrostress-macrostrain relations to produce a closed-form system of equations. It describes the coupled processes of nonlinear deformation and microdamage of the porous material. Algorithms are developed for calculating the dependence of microdamage on macrostresses and macrostrains and plotting stress-strain curves for a homogeneous material under either biaxial normal loading or combined normal and tangential loading. The plots are analyzed depending on the type of stress state __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 30–39, November 2006.  相似文献   

16.
17.
A constitutive equation for polymer solutions and melts is obtained on the basis of the dynamics of noninteracting dumbbells moving in a nonlinear anisotropic fluid. The equation obtained is used to describe nonlinear effects under conditions of simple shear and steady-state flow in a circular tube and for the numerical investigation of a flow in a finite cylinder with a rotating end face. Barnaul. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 3–13, January–February, 2000.  相似文献   

18.
The dynamics and stability of the high-speed fiber spinning process with spinline flow-induced crystallization and neck-like deformation have been studied using a simulation model equipped with governing equations of continuity, motion, energy, and crystallinity, along with the Phan-Thien–Tanner constitutive equation. Despite the fact that a simple one-phase model was incorporated into the governing equations to describe the spinline crystallinity, as opposed to the best-known two-phase model [Doufas et al. J Non-Newton Fluid Mech, 92:27–66, 2000a]; [Kohler et al. J Macromol Sci Phys, 44:185–202, 2005] that treats amorphous and crystalline phases separately in computing the spinline stress, the simulation has successfully portrayed the typical nonlinear characteristic of the high-speed spinning process called neck-like spinline deformation. It has been found that the criterion for the neck-like deformation to occur on the spinline is for the extensional viscosity to decrease on the spinline, so that the spinning is stabilized by the formation of the spinline neck-like deformation. The accompanying linear stability analysis explains this stabilizing effect of the spinline neck-like deformation, corroborating a recent experimental finding [Takarada et al. Int Polym Process, 19:380–387, 2004].This paper was presented at the 2nd Annual European Rheology Conference 2005 on April 21–23, 2005, in Grenoble, France.  相似文献   

19.
An analytical approach is developed for the nonlinear oscillation of a conservative, two-degree-of-freedom (TDOF) mass-spring system with serial combined linear–nonlinear stiffness excited by a constant external force. The main idea of the proposed approach lies in two categories, the first one is the transformation of two nonlinear differential equations of a two-mass system using suitable intermediate variables into a single nonlinear differential equation. Another is the treatment a quadratic nonlinear oscillator (QNO) by the modified Lindstedt–Poincaré (L-P) method presented recently by the authors. The first-order and second-order analytical approximations for the modified L-P method are established for the QNOs with satisfactory results. After solving the nonlinear differential equation, the displacements of two-mass system can be obtained directly from the governing linear second-order differential equation. Unlike the common perturbation method, the modified L-P method is valid for weak as well as strong nonlinear oscillation systems. On the other hand, the new approach yields simple approximate analytical expressions valid for small as well as large amplitudes of oscillation. In short, this new approach yields extended scope of applicability, simplicity, flexibility in application, and avoidance of complicated numerical integration as compared to the previous approaches such as the perturbation and classical harmonic balance methods. Two examples of nonlinear TDOF mass-spring systems excited by a constant external force are selected and the approximate solutions are verified with the exact solutions derived from the Jacobi elliptic function and also the numerical fourth-order Runge–Kutta solutions.  相似文献   

20.
The problem of vibrations of a viscoelastic plate with concentrated masses is studied in a geometrically nonlinear formulation. In the equation of motion of the plate, the action of the concentrated masses is taken into account using Dirac δ-functions. The problem is reduced to solving a system of Volterra type ordinary nonlinear integrodifferential equations using the Bubnov-Galerkin method. The resulting system with a singular Koltunov-Rzhanitsyn kernel is solved using a numerical method based on quadrature formulas. The effect of the viscoelastic properties of the plate material and the location and amount of concentrated masses on the vibration amplitude and frequency characteristics is studied. A comparison is made of numerical calculation results obtained using various theories. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 158–169, November–December, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号