首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed metal complex [Zn(TFA)(3)(μ-OH)Cu(3)(dmae)(3)Br]·THF (1) and its isostructural analogues ([Zn(TFA)(3)(μ-OH)Cu(3)(dmae)(3)Cl]·THF (2) and [Zn(TFA)(3)(μ-OH)Cu(3)(dmae)(3)Cl/Br]·THF (3)) have been prepared by a simple metal ligand assembly method and were characterized by their melting points, elemental analysis, IR spectroscopy, thermogravimetry and single crystal X-ray structures. The compounds are distinguished only by the nature of the halide ions and are made up of the same [Zn(TFA)(3)(μ-OH)Cu(3)(dmae)(3)X]·THF molecular building block with Cu(3)ZnO(4) cubane moieties as the central core in which the four metal ions and four oxygen atoms are joined together in alternate positions of the cuboid. All the complexes crystallize with similar packing and crystallographically related symmetry settings, distinguished mainly by the degree of disorder within the complexes and the ordering of the complexes in the structures. The triclinic cell of (1) emulates the monoclinic cell of (2) and is pseudomerohedrally twinned by a symmetry operation of the monoclinic cell. The molecules in (2) are 1:1 disordered around a crystallographic mirror plane. The structure of the mixed halogen compound (3) in turn is a superstructure of the less symmetric structures of (1) and (2) formed by ordering of the complexes along the longest axis of (3). Aerosol-assisted chemical vapour deposition (AACVD) experiments showed that they are promising precursors to deposit thin films of crystalline Cu/ZnO composites. The surface morphology, microstructure, chemical composition and crystallinity of the resulting Cu/ZnO composite thin films were analysed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDAX), which suggest that the films are thin, crystalline, uniform, smooth and tightly adherent to the substrates with average crystallite sizes in a range between 40.2 and 80.0 nm. Particle sizes, shapes and film morphology were investigated as a function of precursor and decomposition temperature.  相似文献   

2.
3.
The donor-functionalised alkoxides [Et(2)Ga(OR)](2)(R = CH(2)CH(2)NMe(2)(1), CH(CH(2)NMe(2))(2)(2), CH(2)CH(2)OMe (3), CH(CH(3))CH(2)NMe(2)(4), C(CH(3))(2)CH(2)OMe (5)) were synthesised by the 1:1 reaction of Et(3)Ga with ROH in hexane or dichloromethane at room temperature. Reaction of Et(3)Ga with excess ROH in refluxing toluene resulted in the isolation of a 1:1 mixture of [Et(2)Ga(OR)](2) and the ethylgallium bisalkoxide [EtGa(OR)(2)](R = CH(2)CH(2)NMe(2)(6) or CH(CH(3))CH(2)NMe(2)(7)). X-ray crystallography showed that compound 6 is monomeric and this complex represents the first structurally characterised monomeric gallium bisalkoxide. Homoleptic gallium trisalkoxides [Ga(OR)(3)](2) were prepared by the 1:6 reaction of [Ga(NMe(2))(3)](2) with ROH (R = CH(2)CH(2)NMe(2)(8), CH(CH(3))CH(2)NMe(2)(9), C(CH(3))(2)CH(2)OMe (10)). The decomposition of compounds 1, 4, 5 and 8 were studied by thermal gravimetric analysis. Low pressure CVD of 1 and 5 resulted in the formation of thin films of crystalline Ga(2)O(3).  相似文献   

4.
Plasma-induced deposition of wear-protecting A12O3 films has been investigated for two different gas mixtures, one of which is ususally used in thermal CVD. It is shown that, contrary to thermal CVO, the properties of thin films deposited from an AlCl3/O2/Ar mixture are superior to those prepared from AICl3/CO2/H2. High Vickers hardness of 1800-2500 and a low chlorine content of 0.7 at. % have been obtained in films deposited from an AICl3/O2/Ar mixture at a substrate temperature of 500°C.  相似文献   

5.
Plasmas containing hexamethyldisilazane or hexamethylcyclotrisilazane and nitrogen or ammonia were used to deposit silicon nitride-like films at low substrate temperature (T<60°C). Optical properties (refractive index and absorption coefficient), chemical composition of the deposit and film growth rate were examined with respect to the deposition parameters (rf power, pressure and feed composition). As deposited films from ammonia containing mixtures were silicon nitride-like, contained carbon, and were nearly oxygen free. Furthermore, only Si−N, Si−H, and N−H bonds were identified in as-deposited films. The reactive Si−H bonds progressively transformed into Si−O bonds as the films were exposed to air. Films deposited from highly ammonia-diluted mixtures, high RF power and low pressure showed the highest stability with refractive indices as high as 1.8.  相似文献   

6.
Gallium and indium oxide thin films have received much attention in recent years for their wide range of applications. This review summarises the literature concerning single-source precursors and the methods employed to deposit gallium and indium oxide thin films using these compounds. An update of the literature outlining compounds which are potential single-source precursors to these materials is also included.  相似文献   

7.
A single molecular heterobimetallic complex, [Co2Ti(μ3‐O)(TFA)6(THF)3] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized, structurally and spectroscopically characterized and implemented as a single‐source precursor for the preparation of CoTiO3–CoO composite thin films by aerosol‐assisted chemical vapour deposition (AACVD). The precursor complex was prepared by interaction of Co(OAc)2.4H2O [OAc = (CH3COO?)] with Ti(iso‐propoxide)4 in the presence of trifluoroacetic acid in THF, and was analysed by melting point, CHN, FT‐IR, single‐crystal X‐ray diffraction and thermogravimetric analysis. The precursor complex thermally decomposed at 480 °C to give a residual mass corresponding to a CoTiO3–CoO composite material. Good‐quality crystalline CoTiO3–CoO composite thin films deposited at 500 °C by AACVD and characterized through powder X‐ray diffraction and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy show that the crystallites have a rose‐flower‐like morphology with an average petal size in the range of 2–6 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The oxidation state and local geometry of the metal centers in amorphous thin films of Fe2O3 (Fe3+ oxidation state), CoFe2O4 (Co2+/Fe3+ oxidation states), and Cr2O3 (Cr3+ oxidation state) are determined using K edge X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The metal oxide thin films were prepared by the solid-state photochemical decomposition of the relevant metal 2-ethylhexanoates, spin cast as thin films. No peaks are observed in the X-ray diffraction patterns, indicating the metal oxides are X-ray amorphous. The oxidation state of the metals is determined from the edge position of the K absorption edges, and in the case of iron-containing samples, an analysis of the pre-edge peaks. In all cases, the EXAFS analysis indicates the first coordination shell consists of oxygen atoms in an octahedral geometry, with a second shell consisting of metals. No higher shells are observed beyond 3.5 Å for all samples, indicating the metal oxides are truly amorphous, consistent with X-ray diffraction results.  相似文献   

9.
10.
Within a comprehensive programme including synthesis via metal organic chemical vapour deposition (MOCVD) and characterization of inorganic compounds and materials of possible interest in technologies based on thin films, results concerning the deposition of metal oxides by means of volatile organometal precursors are reported. In particular, thallium oxide films obtained by the MOCVD technique and commercial powders of Tl2O3 and Tl2O adsorbed on several metal substrates (stainless steel, Si, Cu, Mo, Pt) were studied by secondary ion mass Spectrometry (SIMS) under ion beam bombardment at different ion energies. The positive- and negative-ion mass spectra exhibit typical isotopic patterns of several ionic species produced by interesting interfacial reactions, and the analysis of their relative abundances provides a measure of oxide reactivity towards different substrates. SIMS measurements of metal substrates were also performed. The ability and limits of SIMS in the reactivity study of thallium oxide powders and films and, in addition, in the identification of reaction products evidencing impurity species that, in turn, can be ascribed to the substrates or to the precursors used for the oxide synthesis is pointed out.  相似文献   

11.
The first mixed-metal Zn-Mg carbamates have been synthesised using a novel strategy of co-reaction between zinc and magnesium alkylamido intermediates. The complexes were structurally characterised by single-crystal X-ray diffraction; the nuclearity of these carbamato core subunits was found to vary from tetrameric to octameric with respect to the level of magnesium incorporated. The presence of magnesium in the predominantly zinc carbamato lattice was confirmed by refinement of the site occupancies of the metal atoms during the crystal data analysis, and it was found that displacement of up to 7.8% of zinc sites by magnesium atoms could be achieved before breakdown of the structure. Characterisation of the complexes' physicochemical properties revealed that they were suitable for use as single-source chemical vapour deposition (SSCVD) precursors in the deposition of Zn(x)Mg(1-x)O thin films, an emerging material with promising band-gap engineering prospects.  相似文献   

12.
Applications of inorganic thin films in the electronics industry have spurred activity in the area of chemical vapor deposition (CVD). This article discusses the increasingly sophisticated design strategies for precursor complexes through a series of case studies on CVD of metal oxide and metal nitride films.  相似文献   

13.
We have demonstrated a novel method to rapidly fabricate nanoporous MOF thin films and patterns on porous alumina substrates under microwave irradiation.  相似文献   

14.
Homogeneously mixed colloidal suspensions of reduced graphene oxide, or RGO, and layered manganate nanosheets have been synthesized by a simple addition of the exfoliated colloid of RGO into that of layered MnO(2). The obtained mixed colloidal suspensions with the RGO/MnO(2) ratio of ≤0.3 show good colloidal stability without any phase separation and a negatively charged state with a zeta (ζ) potential of -30 to -40?mV. The flocculation of these mixed colloidal suspensions with lithium cations yields porous nanocomposites of Li/RGO-layered MnO(2) with high electrochemical activity and a markedly expanded surface area of around 70-100?m(2) g(-1). Relative to the Li/RGO and Li/layered MnO(2) nanocomposites (≈116 and ≈167?F?g(-1)), the obtained Li/RGO-layered MnO(2) nanocomposites deliver a larger capacitance of approximately 210?F?g(-1) with good cyclability of around 95-97?% up to the 1000th cycle, thus indicating the positive effect of hybridization on the electrode performances of RGO and lithium manganate. Also, an electrophoretic deposition of the mixed colloidal suspensions makes it possible to easily fabricate uniform hybrid films composed of graphene and manganese oxide. The obtained films show a distinct electrochemical activity and a homogeneous distribution of RGO and MnO(2). The present experimental findings clearly demonstrate that the utilization of the mixed colloidal suspensions as precursors provides a facile and universal methodology to synthesize various types of graphene/metal oxide hybrid materials.  相似文献   

15.
Pulsed laser deposition (PLD) is a unique method to obtain epitaxial multi-component oxide films. Highly stoichiometric, nearly single crystal-like materials in the form of films can be made by PLD. Oxides which are synthesized at high oxygen pressure can be made into films at low oxygen partial pressure. Epitaxial thin films of highT c cuprates, metallic, ferroelectric, ferromagnetic, dielectric oxides, superconductor-metal-superconductor Josephson junctions and oxide superlattices have been made by PLD. In this article, an overview of preparation, characterization and properties of epitaxial oxide films and their applications are presented. Future prospects of the method for fabricating epitaxial films of transition metal nitrides, chalcogenides, carbides and borides are discussed.  相似文献   

16.
In this paper the preparation, characterization and properties of metal oxide overlayers on dissimilar metal substrates is reviewed. It is shown that using a general recipe metal oxide surfaces can be produced, which are easily accessible with modern surface science techniques. Many different stoichiometries and structures of the oxides can be prepared by variation of the preparation conditions, that do or do not have a counterpart in bulk oxide surfaces. In addition information about the metal oxide surfaces is obtained without experimental problems such as sample mounting, sample heating and sample purity.  相似文献   

17.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

18.
Effect of polychromatic light on the electrochemical deposition of tellurium(IV) ions on a glass carbon electrode from acid solutions of 0.45 M Na2SO4 + 0.05 M H2SO4 with pH 2.2 was studied. It is shown that electrochemical reduction of tellurium(IV) is possible in two stages in the potentiodynamic mode at potentials in the range from 0 to ?1000 mV. Elementary tellurium is formed in the first stage (E = ?320 ± 20 mV) and is reduced to telluride ions in the second (E = ?700 ± 50 mV). It is demonstrated that, under potentiodynamic deposition conditions, visible light affects the generation of Te2? ions at potentials more positive than the electrochemical potential. The chronoamperometric method revealed differences in the behavior of transient currents in the dark and under illumination. The elemental composition and the film surface morphology were studied by electron-probe analysis.  相似文献   

19.
Aerosol assisted chemical vapour deposition of polyoxotungstate precursors [n-Bu4N]2[W6O19] and [n-Bu4N]4H3[PW11O39] produces films of WO(3 - x) and WO3 on glass substrates; the WO3 films show significant photocatalytic decomposition of a test organic pollutant--stearic acid--when irradiated with either 254 or 365 nm radiation.  相似文献   

20.
Hydrogen abstraction by growth precursors is the dominant process responsible for reducing the hydrogen content of amorphous silicon thin films grown from SiH(4) discharges at low temperatures. Besides direct (Eley-Rideal) abstraction, gas-phase radicals may first adsorb on the growth surface and abstract hydrogen in a subsequent process, giving rise to thermally activated precursor-mediated (PM) and Langmuir-Hinshelwood (LH) abstraction mechanisms. Using results of first-principles density functional theory (DFT) calculations on the interaction of SiH(3) radicals with the hydrogen-terminated Si(001)-(2x1) surface, we show that precursor-mediated abstraction mechanisms can be described by a chemisorbed SiH(3) radical hopping between overcoordinated surface Si atoms while being weakly bonded to the surface before encountering a favorable site for hydrogen abstraction. The calculated energy barrier of 0.39 eV for the PM abstraction reaction is commensurate with the calculated barrier of 0.43-0.47 eV for diffusion of SiH(3) on the hydrogen-terminated Si(001)-(2x1) surface, which allows the radical to sample the entire surface for hydrogen atoms to abstract. In addition, using the same type of DFT analysis we have found that LH reaction pathways involve bond breaking between the silicon atoms of the chemisorbed SiH(3) radical and the film prior to hydrogen abstraction. The LH reaction pathways exhibit energy barriers of 0.76 eV or higher, confining the abstraction only to nearest-neighbor hydrogens. Furthermore, we have found that LH processes compete with radical desorption from the hydrogen-terminated Si(001)-(2x1) surface and may be suppressed by the dissociation of chemisorbed SiH(3) radicals into lower surface hydrides. Analysis of molecular-dynamics simulations of the growth process of plasma deposited silicon films have revealed that qualitatively similar pathways for thermally activated hydrogen abstraction also occur commonly on the amorphous silicon growth surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号