首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molybdenum sulfides nanomaterials, such as one-dimensional (1D) nanotubes, nanoribbons, and two-dimensional (2D) nanosheets, have attracted intensive research interests for their novel electronic, optical, and catalytic properties. On the basis of first-principles calculation, here, we report a new series of 1D ultrathin molybdenum sulfides nanowires, including Mo2S6、Mo3S6 and Mo6S10 nanowires. Our results demonstrate that these ultrathin nanowires are both thermal and lattices dynamically stable, confirmed with the calculated phonon spectrum and Born-Oppenheimer molecular dynamic simulation at the temperature up to 600 K. The calculated elastic constant is 21.33, 103.22, and 163.00 eV/? for Mo2S6, Mo3S6, and Mo6S10 nanowires, respectively. Mo2S6 and Mo3S6 nanowires are semiconductors with band gap of 1.55 and 0.46 eV, while Mo6S10 nanowires is metal, implying their potential applications in electronics and optoelectronics. In particular, ultrathin molybdenum sulfides nanowires can be used as catalysts for hydrogen evolution reaction. The calculated Gibbs free energy change for hydrogen evolution is about -0.05 eV for Mo2S6 nanowire, comparable with those of Pt and H-MoS2. The prediction of these 1D molybdenum sulfides nanowires may enrich the 1D family molybdenum sulfides and make a supplement to understand the high performance of hydrogen evolution reaction in transition-metal dichalcogenides.  相似文献   

2.
Nb doped multiferroic BiFe1-xNbxO3 (0 <x <0.05) polycrystalline powders have been syn-thesized by using a sol-gel method. The effect of Nb dopant on the structural, magnetic and optical properties is investigated. According to the X-ray di raction data and the result of Rietveld re nement, all the samples maintain the R3c phase, while the lattice parameters a, c, the cell volume V and the Fe-O-Fe bond angle change. The remnant magnetization enhances by appropriate Nb doping due to the decreasing of the grain size. Meanwhile, Nb dopant leads to the narrowing of the band gap of BiFe1-xNbxO3 samples.  相似文献   

3.
The structure of the new pentanary thio­phosphate rubidium silver diniobium tris(disulfide) tetrathio­phosphate, Rb0.38Ag0.5Nb2PS10, is made up of one‐dimensional [Nb2PS] chains along the [001] direction. These chains are separated from one another by Ag+ and disordered Rb+ ions. The Nb2PS chain is built up from bicapped trigonal prismatic Nb2S12 units which lie about inversion centres and tetrahedral PS4 groups. The Nb2S12 units are linked together to form linear Nb2S9 chains by sharing S—S prism edges. Short [2.898 (1) and 2.908 (1) Å] and long [3.724 (1) Å] Nb⋯Nb distances alternate along the chains, and S and S2− anionic species co‐exist in the structure. The Ag+ cation lies on an inversion centre and has distorted octahedral coordination described as a [2+4]‐bonding interaction.  相似文献   

4.
使用Nb2O5和Nb(OC6H5)5为铌源对LiFePO4/C中的锂位和铁位分别掺杂,采用碳热还原法合成掺杂Nb的磷酸铁锂系列材料。运用X射线衍射仪、扫描电镜、循环伏安、交流阻抗谱和恒电流充放电测试等对材料进行表征。结果表明:相比掺杂位置,铌源对材料的颗粒形貌和粒径分布影响更大,而颗粒大小对材料的电化学性能,尤其是大倍率性能的提高有重要作用;掺杂在Li位的Nb元素比在Fe位能更好的稳定晶体结构,从而有利于提高循环性能。  相似文献   

5.
Summary Catalytic and physicochemical properties of V-Mo-Nb oxide catalysts (V0.3Mo1Nbx, where x = 0.05, 0.15, 0.22, and 0.27) have been studied in the ammoxidation of ethane. An increase in the Nb content in the samples is accompanied by an increase in the catalytic activity and selectivity to acetonitrile. It was established that a triple Mo5O14-like phase with a variable composition (V0.23 ±0.3Mo1Nbx, where х = 0.2?0.37) acts as an active component in the catalyst.</o:p>  相似文献   

6.
Nb-doped cathode materials with the formula Li(Ni0.7Mn0.3)1?xNbxO2 (x?=?0, 0.01, 0.02, 0.03, 0.04) have been prepared successfully by calcining the mixtures of LiOH·H2O, Nb2O5, and Ni0.7Mn0.3(OH)2 precursor formed through a simple continuous co-precipitation method. The effects of Nb substitution on the crystal structure and electrochemical properties of LiNi0.7Mn0.3O2 were studied systematically by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and various electrochemical measurements. The results show that the lattice parameters of the Nb substitution LiNi0.7Mn0.3O2 samples are slightly larger than that of pure LiNi0.7Mn0.3O2, and the basic α-NaFeO2 layered structure does not change with the Nb doping. What’s more, better morphology, lower resistance, and good cycle stability were obtained after Nb substitution. In addition, CV test exhibits that Nb doping results in lower electrode polarization and XPS results indicate that the valence of Mn kept constant but the component of Ni3+ decreased after doping. All the results indicate that Nb doping in LiNi0.7Mn0.3O2 is a promising method to improve the properties of Ni-rich lithium-ion batteries positive-electrode materials.  相似文献   

7.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

8.
The structure of the new quaternary thio­phosphate rubidium diniobium tris­(di­sulfide) tetra­thio­phosphate, RbNb2(S2)3(PS4), is made up of one‐dimensional [Nb2(S2)3(PS4)?] chains along the [101] direction, and these chains are separated from one another by Rb+ ions. The chain is basically built up from [Nb2S12] units and tetrahedral [PS4] groups. The [Nb2S12] units are linked together to form a linear [Nb2S9] chain by sharing the S–S prism edge. Short and long Nb—Nb distances [2.888 (2) and 3.760 (2) Å, respectively] alternate along the chain, and the anionic species S22? and S2? are observed.  相似文献   

9.
The crystal structure of NbS3 was determined from single-crystal diffractometer data obtained with Mo radiation. The compound is triclinic, space group P1, with: a 4.963(2) Å; b = 6.730(2) Å; c = 9.144(4)Å; α = 90°; β = 97.17(1)°; γ = 90°. The structure is closely related to the ZrSe3 structure type; it shows that the compound can be formulated as Nb4+(S2)2?S2?, in agreement with XPS spectra. The main difference with ZrSe3 is that the Nb atoms are shifted from the mirror planes of the surrounding bicapped trigonal prisms of sulfur atoms to form NbNb pairs (NbNb = 3.04 Å); this causes a doubling of the b axis relative to ZrSe3 and a decrease of the symmetry to triclinic.  相似文献   

10.
Computational investigations in catalysis frequently use model clusters to represent realistically the catalyst and its reaction sites. Detailed knowledge of the molecular charge, thus electronic density, of a cluster would then allow physical and chemical insights of properties and can provide a procedure to establish their optimum size for catalyst studies. For this purpose, an approach is suggested to study model clusters based on the distributed multipole analysis (DMA) of molecular charge properties. After full density functional theory (DFT) geometry optimization of each cluster, DMA computed from the converged DFT one‐electron density matrix allowed the partition of the corresponding cluster charge distribution into monopole, dipole, and quadrupole moments on the atomic sites. The procedure was applied to MoS2 model clusters Mo10S18, Mo12S26, Mo16S32, Mo23S48, and Mo27S54. This analysis provided detailed features of the charge distribution of each cluster, focused on the 101 0 (Mo or metallic edge) and 1 010 (sulfur edge) active planes. Properties of the Mo27S54 cluster, including the formation of HDS active surfaces, were extensively discussed. The effect of cluster size on the site charge distribution properties of both planes was evaluated. The results showed that the Mo16S32 cluster can adequately model both active planes of real size Mo27S54. These results can guide future computational studies of MoS2 catalytic processes. Furthermore, this approach is of general applicability. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
A solid solution Mo6 ? x Nb x I11 (x = 1.1–1.5) containing cluster cores {Mo5NbI8} is obtained by the high-temperature reaction of molybdenum, niobium, and iodine (550°C, 70 h, quartz ampule). According to the X-ray diffraction data, heating at 800°C in a molybdenum container results in the decomposition of the solution to Mo6I12 and Nb6I11. According to the X-ray structure analysis data, the compounds are isostructural to the high-spin modification Nb6I11 (space group Pccn). The presence of Nb atoms in the structure changes the structural type from the layered (Mo6I12) to framework structure, noticeably increases the metalmetal distances (2.661–2.716 Å, 2.695 Å) Mo6 octahedron with the retention of the distance from the metal (M) to the μ3-“capped” I atoms, and strongly elongates the M6-I-M6 bridges almost to the value observed in Nb6I11.  相似文献   

12.
Structure determination of the molybdenum purple bronze Na0.9Mo6O17 is carried out by single-crystal X-ray diffraction. The crystal is monoclinic with space group A2 and the lattice constants are a = 12.983(2), b = 5.518(1), c = 9.591(2) Å, β = 89.94(1)°, Z = 2. Full-matrix least-squares refinement gives the final values of R(F) = 0.028 and Rw(F) = 0.040 for 1484 independent reflections, in which the occupancy factor of the sodium atom becomes 0.899(12). The present structure is built up of the linkage of the MoO4 and MoO6 polyhedra. There are slabs which consist of four layers of distorted MoO6 octahedra sharing corners. Both the structure and the molybdenum valence distribution estimated from the MoO bond lengths are considered to lead to the two-dimensional electronic transport. This structure is compared with those of other members of molybdenum purple bronzes, K0.9Mo6O17 and Li0.9Mo6O17. The difference of the electronic properties among these compounds can be well understood on the basis of their structural characteristics.  相似文献   

13.
Nanoparticles of Nb5+-Fe3+ codoped TiO2 with various Nb5+ concentrations (Nb/(Ti+Fe+Nb)=0-10.0 at%) and Fe3+ (Fe/(Ti+Fe+Nb)=0-2.0 at%) were synthesized using Ar/O2 thermal plasma. Dopant content, chemical valence, phase identification, morphology and magnetic properties were determined using several characterization techniques, including inductively coupled plasma-optical emission spectrometer, X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis diffuse reflectance spectrometer, field-emission scanning electron microscopy, transmission electron microscopy and SQUID commercial instrument. The XRD revealed that all the plasma-synthesized powders were exclusively composed of anatase as major phase and rutile. The rutile weight fraction was increased by the substitution of Fe3+ for Ti4+ whereas it was reduced by the Nb5+ doping. The plasma-synthesized Nb5+-Fe3+ codoped TiO2 powders had intrinsic magnetic properties of strongly paramagnetic and feebly ferromagnetic at room temperature. The ferromagnetic properties gradually deteriorated as the Fe3+ concentration was decreased, suggesting that the ferromagnetism was predominated by the phase composition as a carrier-mediated exchange.  相似文献   

14.
The structure model for the Eu1.3Nb1.9S5 compound is determined based on high-resolution electron microscopy evidence. This compound crystallizes in a hexagonal unit cell with a=8.8732(8) Å and c=23.45(1) Å. Its structure is built up as an alternating sequence of trigonal-prismatic NbS2 layers of formula [Nb7S14] and [Nb(Eu3S4)2] slabs along the c-direction. In the [Nb(Eu3S4)2] block the stacking of two close-packed (Eu3S4) layers creates octahedral interstices formed by S atoms; these cavities are occupied by Nb cations. The model is compared with structures of other Eu-containing niobium sulfides, such as Eu0.167NbS2 and the misfit compound [(EuS)1.5]1.15NbS2.  相似文献   

15.
(Nb2O5) x ·(SiO2)1−x gels of four different compositions with x = 0.025 (2.5Nb), 0.050 (5Nb), 0,10 (10Nb) and 0.20 (20Nb) were synthesized at room temperature from niobium penta-chloride and tetra-ethoxysilane and their structural evolution with the temperature was examined by X-ray diffraction, thermogravimetry/differential thermal analysis, Raman and IR spectroscopy (Fourier transform). The synthesis procedure tuned in this work allowed to obtain for each studied composition transparent chemical gels in which the niobium dispersion resulted to be strongly dependent on the Nb2O5 loading: it was on the atomic scale for the 2.5Nb and 5Nb gel samples whereas the gel structure of the 10Nb and 20Nb appears formed by phase separated niobia-silica nanodomains. All dried gels keep their amorphous nature up to 873 K, while at higher temperatures crystallization of T- and H-Nb2O5 polymorphs were observed according to the Nb2O5 loading: at low loading T-Nb2O5 was the main crystallising phase, whereas at higher one the H-Nb2O5 prevails. Particularly, T-Nb2O5 was the sole crystallising phase in the whole explored temperature range for the 2.5Nb, keeping its nanosize up to 1273 K for all samples except for the 20Nb.  相似文献   

16.
Thermally stable Brønsted acid sites were generated on alumina‐supported niobium oxide (Nb2O5/Al2O3) by calcination at high temperatures, such as 1123 K. The results of structural characterization by using Fourier‐transform infrared (FTIR) spectroscopy, TEM, scanning transmission electron microscopy (STEM), and energy‐dispersive X‐ray (EDX) analysis indicated that the Nb2O5 monolayer domains were highly dispersed over alumina at low Nb2O5 loadings, such as 5 wt %, and no Brønsted acid sites were presents. The coverage of Nb2O5 monolayer domains over Al2O3 increased with increasing Nb2O5 loading and almost‐full coverage was obtained at a loading of 16 wt %. A sharp increase in the number of hydroxy groups, which acted as Brønsted acid sites, was observed at this loading level. The relationship between the acidic properties and the structure of the material suggested that the bridging hydroxy groups (Nb? O(H)? Nb), which were formed at the boundaries between the domains of the Nb2O5 monolayer, acted as thermally stable Brønsted acid sites.  相似文献   

17.
The present article reviews synthetic approaches to efficiently prepare Mo3S7 clusters coordinated to 1,2-bis-dithiolene ligands of general formula [Mo3S7(dithiolene)3]2? where dithiolene stands for tfd (bis(trifluoromethyl)-1,2-dithiolene), bdt (1,2-benzenedithiolene), mnt (maleonitriledithiolene), tdas (1,2,5-thiadiazole-3,4-dithiolene), dmid (1,3-dithia-2-one-4,5-dithiolene), dmit (1,3-dithia-2-thione-4,5-dithiolene) and the diselenolene dsit (1,3-dithia-2-thione-4,5-diselenolene). These [Mo3S7(dithiolene)3]2? dianions serve as starting materials to access new dithiolene clusters featuring Mo3S4 and Mo2O2S2 cluster cores. The electrochemical and spectroscopic properties as well as solid state structures of Mo3S7/dithiolene compounds are also described. These C3-symmetry [Mo3S7(dithiolene)3]2? molecules inherently possess degenerate frontier orbitals and display a rich structural diversity due to the electrophilic character of the three sulfur atoms in axial positions. These characteristics make the [Mo3S7(dithiolene)3]2? dianions, versatile targets for the development of new molecular conductors. Several examples of hybrid charge-transfer salts based on TTF-donors and [Mo3S7(dithiolene)3]2?/[Mo3S7X6]2? dianions (X = Cl, Br) are discussed as well as the preparation of the first family of cluster-based single-component magnetic conductors of formula Mo3S7(dithiolene)3.  相似文献   

18.
Na3Al2Nb34O64 and Na (Si, Nb) Nb10O19. Cluster Compounds with Isolated Nb6-Octahedra Hexagonal ormolu coloured plates of the new compounds Na3Al2Nb34O64 ( I ) and Na(Si, Nb)Nb10O19 ( II ) were prepared by heating pellets of NaF, Al2O3, NbO2 and NbO (3:1:8:2) and NaF, NbO2 and NbO (1:4:2), respectively, at approx. 850°C. I was contained in a sealed gold capsule, II in a silica tube. The Si incorporated in II originates from the container material. Both compounds crystallize in R 3 , I with a = 784.4(1), c = 7065(1) pm, Z = 3 and II with a = 784.1(1), c = 4221.8(5) pm, Z = 6. I and II represent new structure types. They contain the same characteristic structural units, namely discrete Nb6O12 clusters (dNb–Nb = 283 ± 4 pm) and Nb2O10 units with Nb–Nb dumbells (dNb–Nb ≈? 269 pm) in edgesharing coordination octahedra. In addition NbO6 octahedra containing Nb in the oxidation state + 5 and NaO12 cube-octahedra occur in both compounds besides AlO4 and SiO4 tetrahedra in I and II , respectively. The structures can be described in terms of a common closepacking of O and Na atoms together with Nb6 octahedra.  相似文献   

19.
The electronic structure of binuclear niobium complexes [Nb2S4(acac)4] and K4[Nb2S4(ox)4] is studied by X-ray emission fluorescent spectroscopy and quantum chemistry techniques. Data on the partial atomic composition of highest occupied molecular orbitals of the complexes are obtained. The energy positions of bonding and antibonding frontier molecular orbitals observed in the X-ray emission spectra of binuclear [Nb2((S2)2–)2]4+ clusters are determined by the analysis of overlap populations.  相似文献   

20.
Zusammenfassung Nb3Sn und Mo3Al bilden eine lückenlose Mischreihe. Nb3Sn löst bei 1600°C rd. 60 Mol% Ti3Sn, 30 Mol% Zr(3)Sn, 40 Mol% Hf(3)Sn bzw. 50 Mol% Nb(3)Si.Mit 5 Abbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号