首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various noncovalent complexes between native and derivatized cyclodextrins (CDs) and barbiturates were studied using capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). This paper involves the study of four aspects of CD-barbiturate noncovalent inclusion complexes. The first study focused on determining the formation of CD-barbiturate inclusion complexes in ESI-MS. This determination was accomplished by the comparison of migration data from CE with ESI-MS inclusion complex peak abundances, which were found to be complementary. The second study found the possibility of predicting native beta-CD mediated CE elution orders for barbiturates using data from ESI-MS. A third study focused on the formation of barbiturate inclusion complexes with derivatized beta-CD and gamma-CD. As part of this study, the effect of the extent of side chain substitution on native CD complexation behavior was investigated. The results indicated that the number of side chains on the CD does not affect the formation of barbiturate complexes with the hydrophobic CD cavity. Finally, a comparison of the hydroxypropyl-beta-CD-barbiturate and hydroxypropyl-gamma-CD-barbiturate complexes in CE and ESI-MS was made to study the relationship between strength of drug-CD binding and enantioresolution. The results from the above studies indicated that the gas phase and the solution state complexes showed comparable behavior indicating that similar interactions played a role in stabilizing these complexes. While it was possible to use the ESI-MS data to determine drug binding to the CDs, it was not possible to predict whether a separation of the enantiomers of a chiral barbiturate would occur. However, the ESI-MS data could be used to eliminate certain CDs from consideration as chiral selectors.  相似文献   

2.
Non-covalent inclusion complexes formed between an anti-inflammatory drug, oleanolic acid (OA), and alpha-, beta- and gamma-cyclodextrins (CDs) were investigated by means of solubility studies and electrospray ionization tandem mass spectrometry (ESI-MS(n)). The order of calculated association constants (K(1 : 1)) of complexes between OA and different CDs in solution is in good agreement with the order of their relative peak intensities and the relative CID energies of the complexes under the same ESI-MS(n) conditions. These results indicate a direct correlation between the behaviors of solution- and gas-phase complexes. ESI-MS can thus be used to evaluate solution-phase non-covalent complexes successfully. The experimental results show that the most stable 1 : 1 inclusion complexes between three CDs and OA can be formed, but 2 : 1 CD-OA complexes can be formed with beta- and gamma-CDs. Multi-component complexes of alpha-CD-OA-beta-CD (1 : 1 : 1), alpha-CD-OA-gamma-CD (1 : 1 : 1) and beta-CD-OA-gamma-CD (1 : 1 : 1) were found in equimolar CD mixtures with excess OA. The formation of 2 : 1 and multi-component 1 : 1 : 1 non-covalent CD-OA complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion non-covalent complexes with OA. The above results can be partly supported by the relative sizes of OA and CD cavities by molecular modeling calculations. All the complexes allow the detection of gaseous deprotonated CD-OA complexes in the negative ion mode at high abundances. The relative stabilities of the CDs-OA inclusion complexes in the gas phase can be evaluated from the relative CID energies in the ion trap (alpha-CD-OA < beta-CD-OA < gamma-CD-OA) in the negative ion mode.  相似文献   

3.
Host-guest complexes between nucleobases or nucleosides and beta-cyclodextrin can be observed by electrospray ionization mass spectrometry (ESI-MS) and their relative abundances appear to correlate with the condensed-phase binding order. Using Fourier transform ion cyclotron resonance mass spectrometry, the extent of the interactions between the host oligosaccharide and guest species have also been examined for permethylated beta-cyclodextrin : adenine/deoxyadenosine and permethylated maltoheptaose : adenine/deoxyadenosine using gas-phase exchange reactions with the gaseous amines, n-propylamine and ethylenediamine. The ease of guest exchange in the gas-phase follows the order : deoxyadenosine > adenine > deoxycytidine > cytosine, which is in contrast to their relative binding order in solution. Collision-induced dissociation (CID) has been used to probe the fragmentation behavior of oligosaccharide : nucleobase/nucleoside complexes. Under these conditions the inclusion complexes either (a) dissociate, (b) result in cleavage of the host oligosaccharide or (c) result in cleavage of the guest molecule. This study has shown that the preferred dissociation pathway of these complexes depends on the structures of both the cyclodextrin and guest molecule.  相似文献   

4.
Deutero-reduced permethylated oligosaccharides were analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) using a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, fitted with a nanoflow ESI source. Under these ionization conditions such derivatives preferentially form sodiated molecular species in addition to protonated molecular species. Under collision-induced dissociation, protonated and sodiated molecular species yield simple and predictable fragment mass spectra. A systematic study was conducted on a series of deutero-reduced permethylated glycans to allow rationalization of the fragmentation processes. MS/MS spectra were characterized by fragments resulting from the cleavage of glycosidic bonds. These fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Furthermore, the substituent 3-linked to a HexNAc unit was readily eliminated. Special attention was devoted to a systematic study of fucosylated glycans. The fucosylated deutero-reduced permethylated glycans were submitted to an acidic hydrolysis, releasing specifically the fucosyl residues. The nascent free hydroxyl groups were subsequently CD3-labelled in order to determine the positions initially bearing the fucosyl residues along the oligosaccharide backbone. This methodology was finally applied to characterize a glycan pool enzymatically released from glycoproteins. The present data show that structural elucidation can be achieved at the 50 fmol level.  相似文献   

5.
Cyclodextrins (CDs) are widely used in the pharmaceutical industry for their capability of improving bioavailability, solubility, or stability of drugs via the formation of soluble inclusion complexes. CDs have also been widely used in various chemical analysis methods. In this work, liquid chromatography/electrospray mass spectrometry (LC/ESI-MS) analysis for four different drugs (imipramine, desipramine, propranolol, and naproxen) that form inclusion complexes with CDs was performed in the presence and absence of beta-CD. These drugs are subject to nonspecific adsorption when brought into contact with plastics, such as HPLC tubing, sample collection and preparation apparatus, etc. Inclusion of the CD in the samples reduces this nonspecific adsorption due to competitive complex formation between the CD and the analyte. ESI-MS ion intensities increased when beta-CD was included in the sample with concentrations up to 1% (w:v), with a diverter valve installed post LC column. The degree of increased ion signal correlated with the beta-cyclodextrin:analyte binding constant. beta-CD appeared to elute within the void volume time and was observed in a full spectrum scan among the different analyte samples with up to 0.01% beta-CD injected directly to the LC/MS system with the diverter valve switched inline with the mass spectrometer. The use of the diverter valve allowed for direct injection of samples containing up to 1% beta-CD to the LC/MS without any deterioration of analyte ion signal.  相似文献   

6.
In the present work the feasibility of β-cyclodextrin in complexation was explored, as a tool for improving the solubility and biological ability of daidzein derivatives. A series of phosphorylated daidzein derivatives featuring different chain lengths were synthesized through a modified Atherton-Todd reaction and their inclusion complexes with βCD were prepared by coprecipitation method. The inclusion complexation behavior was studied by fluorescence, UV, FT-IR, MS and (1)H NMR. The results showed that only phosphorylated daidzein derivative carrying small substituent group ((C(2)H(5)O)(2)PO) entered the cavity of βCD and formed 1:1 inclusion complex. The formation constant was 175(mol/L)(-1).  相似文献   

7.
Dimers of inclusion complexes were formed from a new cryptand and viologens (paraquats) driven by dipole-dipole and face-to-face pi-stacking interactions as shown by mass spectrometric characterization and X-ray analysis.  相似文献   

8.
When an intramolecular cavity exists in a molecule, it can trap another chemical species to form a host-guest complex. We examine the formation of such an inclusion complex with cucurbit[n]uril (CBn, n = 6, 7) as the host to trap alkali metal or ammonium ions as the guest, by electrospray ionization mass spectrometry (ESI-MS). The results show that the inclusion complexes are formed between the three-dimensional cylinder of CBn hosts and the guest cations. Selectivity of the complex formation is dependent both on (1) ion-dipole interactions between the cylindrical portal of the CBn hosts and the guest cations and (2) the hydrophobic interactions at the inner cavity of CBn.  相似文献   

9.
分子间的非共价相互作用对于理解分子复合物的结构和性质有着非常重要的意义。而电喷雾电离质谱(ESI-MS)是团簇化学研究的一种重要工具,广泛用于重要生物分子复合物的形成和性质研究,包括氨基酸、多肽和核糖等。该文将一定化学剂量比的磷酸分别与L型精氨酸和L型色氨酸混合,通过电喷雾电离的方法,利用傅立叶变换离子回旋共振质谱仪对精氨酸-磷酸以及色氨酸-磷酸的非共价复合物离子进行了研究。结果显示,精氨酸和色氨酸均可与磷酸分子产生种类丰富、价态为+1和+2的复合物离子。而对不同体系的生成离子分布进行分析,则显示出不同体系间的差别。  相似文献   

10.
In this study inclusion of hexadecyltrimethylammonium bromide (HTAB) with α-, and β-cyclodextrin (CD) in the presence and the absence of bromhexine (BH) was investigated using ion-selective electrode method. The association constants of HTAB with CDs were determined by potentiometry and were close to literature values. The obtained results indicated that α-CD formed 1:1 and 1:2 inclusion complexes, but β-CD formed only a 1:1 inclusion complex. In the presence of drug, the interaction between CDs and HTAB decreased, because both drug and HTAB could interact with CDs. The results showed that the interaction between drug and CDs are greater than HTAB and CDs. The stoichiometry of the inclusion complexes, the critical aggregation concentration (CAC), the monomer surfactant concentration of HTAB, [HTAB]f, and also the effect of the inclusion complex on the micellization process of the HTAB were determined by conductivity measurements.  相似文献   

11.
[reaction: see text] Skeleton-modified cyclodextrin (CD) derivatives, in which an alpha-(1,4)-glucosidic bond is converted into a beta-(1,4)-glucosidic bond, were conveniently synthesized by cleavage of a single glucosidic bond in permethylated and 2,6-di-O-methylated alpha- and beta-CDs and subsequent recyclization via the trichloroacetoimidate intermediates. The selective cleavage of an alpha-(1,4)-glucosidic bond of permethylated alpha- and beta-CDs was accomplished by stirring in 30% aq HClO(4) at 25 degrees C to give the corresponding maltohexaose and maltoheptaose derivatives, respectively. The cleavage of a glucosidic bond of hexakis(3-O-benzyl-2,6-di-O-methyl)-alpha-CD was successfully carried out in a mixed 60% aq HClO(4) and 1,4-dioxane solution (1:20). In the case of heptakis(3-O-benzyl-2,6-di-O-methyl)-beta-CD, the solvent-free reaction with p-toluenesulfonic acid was found to be effective for selective cleavage of one glucosidic bond. The permethylated beta-CD derivative with a beta-(1,4)-glucosidic bond (4b) exhibited higher inclusion ability toward sodium m-nitrobenzoate than the parent permethylated beta-CD, while these hosts showed the same inclusion ability toward sodium p-nitrobenzoate. On the other hand, the beta-(1,4)-type permethylated alpha-CD derivative 4a exhibited lower inclusion ability toward sodium p- and m-nitrobenzoates than the parent permethylated alpha-CD. Interestingly, host molecules 4a and 4b showed inclusion selectivity for sodium m-nitrobenzoate as compared with the corresponding para-isomer, in contrast to permethylated CDs which possessed para-isomer selectivity. On the other hand, host molecules 4a and 4b showed para-isomer selectivity toward sodium nitrophenoxide guests, indicating that the inclusion selectivity was remarkably influenced by the guest hydrophilic groups. (1)H NMR studies on complexes of those beta-(1,4)-type CD derivatives with p- and m-nitrobenzoates and p- and m-nitrophenolates were carried out to estimate their structures.  相似文献   

12.
Non-covalent complexes between three derivitized cyclodextrins (CD's) and six local anesthetics were studied using capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). The CE study was performed using the complete filling technique (CFT). A comparison between the migration data from CE and ESI-MS inclusion complex peak abundances was made representing the association between local anesthetics and CD's in the solution and the gas phase, respectively. The results from this study showed comparable behavior of the complexes in the CE and mass spectrometer, indicating similarity in the parameters controlling the stability of these complexes. Therefore, the formation of specific non-covalent complexes, as shown in this study, could be used to predict the behavior of a complexing agent with a substrate in the solution phase by observing data obtained from ESI-MS.  相似文献   

13.
The inclusion complexes of four ligands binding to cyclodextrins (CDs) were studied by electrospray ionization mass spectrometry (ESI-MS) and the dissociation constants of the complexes were obtained. The 1:1 stoichiometric inclusion complex was found in the system of CD and fenbufen or aspirin. The obtained KD values of the inclusion complexes of fenbufen binding to alpha-CD and to beta-CD are 4.38x10(-4) mol L(-1) and 2.12x10(-4) mol L(-1), respectively. The KD values of the inclusion complexes of alpha-CD-aspirin and beta-CD-aspirin are 3.33x10(-4) mol L(-1) and 1.83x10(-4) mol L(-1), respectively. A non-linear least squares regression method was applied to validate the results which were consistent with each other. For the system of tetracycline hydrochloride and CD, the 1:1 and 1:2 stoichiometric inclusion complexes were found in the mass spectra. The KD,1 and KD,2 values of the 1:1 and 1:2 stoichiometric inclusion complexes of alpha-CD and tetracycline hydrochloride are 4.47x10(-4) mol L(-1) and 6.51x10(-4) mol L(-1), respectively, and those of beta-CD and tetracycline hydrochloride are 2.26x10(-4) mol L(-1) and 8.57x10(-4) mol L(-1), respectively. For the system of norfloxacin and CD, besides the 1:1 and 1:2 inclusion complexes, the 1:3 stoichiometric inclusion complex was also found. The KD,1, KD,2 and KD,3 of alpha-CD and norfloxacin inclusion complexes are 4.61x10(-4) mol L(-1), 6.05x10(-4) mol L(-1) and 1.45x10(-3) mol L(-1), respectively. The three KD values of beta-CD and norfloxacin are 1.96x10(-4) mol L(-1), 4.93x10(-4) mol L(-1) and 1.15x10(-3) mol L(-1), respectively.  相似文献   

14.
The possible mechanisms of the opposite affinity pattern of the enantiomers of dimethindene [(R,S)-N,N-dimethyl-3[1(2-pyridyl)ethyl]indene-2-ethylamine] (DIM) towards native beta-cyclodextrin (beta-CD) and heptakis(2,3,6-tri-O-methyl-)-beta-CD (TM-beta-CD) were studied using capillary electrophoresis (CE), NMR spectrometry, electrospray ionization mass spectrometry (ESI-MS) and X-ray crystallography. NMR spectrometry allowed to estimate the stoichiometry of the complex and to determine the binding constants. As found using ESI-MS, together with more abundant 1:1 complex, a complex with 1:2 stoichiometry may also be present in a rather small amount in a solution of DIM and beta-CD. One-dimensional ROESY experiments indicated that the geometry of the complexes of DIM with native beta-CD depends on the ratio of the components in the solution. In the 1:1 solution of DIM and beta-CD the complex may be formed by inclusion of the indene moiety of DIM into the cavity of beta-CD on the primary side and into the cavity of TM-beta-CD into the secondary side. The most likely structural reason for lower affinity of the enantiomers of DIM towards the cavity of TM-beta-CD compared to native beta-CD could be elucidated. The indene moiety does not enter the cavity of TM-beta-CD as deeply as the cavity of beta-CD. This may be the most likely explanation of significantly higher affinity constants of DIM enantiomers towards the latter CD compared to the former one. The marked difference between the structure of the complexes may also be responsible for the opposite affinity pattern of the DIM enantiomers towards beta-CD and TM-beta-CD.  相似文献   

15.
Electron capture dissociation mass spectrometry (ECD MS) was carried out for a number of β-permethylated cyclodextrin (CD)-peptide noncovalent complexes in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Examined peptides included Angiotensin II (DRVYIHPF), Substance P (RPKPQQFFGLM), and Bradykinin (RPPGFSPFR) and its analogs (PPGFSPFR and RPPGFSPF). ECD MS for doubly protonated complexes [M:CD+2H]2+ mainly yielded cleavage of the backbones of the constituent peptide with little disassembly of a peptide and β-CD. Analysis of ECD MS fragments indicated that a protonated basic amino-acid residue or N-terminal amino group interacted more favorably with β-CD than did aromatic group-containing amino-acid residues (inclusion complex). In contrast to the formation of inclusion CD complexes in solution, we observed no specific evidence from our ECD MS mass spectra to support the generation of phenyl inclusion complexes in the gas phase. For gas-phase peptides, we suggest that ion–dipole interaction is the main driving force for the formation of noncovalent β-CD complexes rather than phenyl inclusion interactions.  相似文献   

16.
In this study, we demonstrate, using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (ESI-MS/CID/MS), that stable noncovalent complexes can be formed between Fe(III)-heme and antimalarial agents, i.e., quinine, artemisinin, and the artemisinin derivatives, dihydroartemisinin, alpha- and beta-artemether, and beta-arteether. Differences in the binding behavior of the examined drugs with Fe(III)-heme and the stability of the drug-heme complexes are demonstrated. The results show that all tested antimalarial agents form a drug-heme complex with a 1:1 stoichiometry but that quinine also results in a second complex with the heme dimer. ESI-MS performed on mixtures of pairs of various antimalarial agents with heme indicate that quinine binds preferentially to Fe(III)-heme, while ESI-MS/CID/MS shows that the quinine-heme complex is nearly two times more stable than the complexes formed between heme and artemisinin or its derivatives. Moreover, it is found that dihydroartemisinin, the active metabolite of the artemisinin-type drugs in vivo, results in a Na(+)-containing heme-drug complex, which is as stable as the heme-quinine complex. The efficiency of drug-heme binding of artemisinin derivatives is generally lower and the decomposition under CID higher compared with quinine, but these parameters are within the same order of magnitude. These results suggest that the efficiency of antimalarial agents of the artemisinin-type to form noncovalent complexes with Fe(III)-heme is comparable with that of the traditional antimalarial agent, quinine. Our study illustrates that electrospray ionization mass spectrometry and collision-induced dissociation tandem mass spectrometry are suitable tools to probe noncovalent interactions between heme and antimalarial agents. The results obtained provide insights into the underlying molecular modes of action of the traditional antimalarial agent quinine and of the antimalarials of the artemisinin-type which are currently used to treat severe or multidrug-resistant malaria.  相似文献   

17.
Electrospray ionization (ESI) is a soft ionization technique that is able to transfer intact ions, as well as solution phase non-covalent complexes into the gas phase. With small molecules that have a high tendency to form hydrogen bonds, the observation of non-covalent complexes by ESI-MS can be the result of a non-specific interaction, due to the nature of the electrospray process. Special precautions and additional steps should be performed to identify the origin of the complexes observed with ESI-MS, and we have utilized solution phase hydrogen/deuterium (H/D) exchange as a method to determine the specificity of the complexes. By comparing the average number of exchanges for the monomer subunits to the average number of exchanges for the complex, one can distinguish if a specific complex is formed in solution. In this paper we have investigated non-covalent complexes of some common chemotherapy agents: paclitaxel, doxorubicin, and etoposide by ESI-MS. By using the solution phase H/D exchange, we were able to identify several specific drug-drug complexes. Thus, solution phase H/D exchange combined with ESI-MS provides for a convenient method in ascertaining the specificity of non-covalent complexes as being formed in solution or in vacuo.  相似文献   

18.
Electrospray ionization mass spectrometry (ESI-MS) is now routinely used for the detection of cyclodextrin noncovalent complexes, complementing previously established methods. Host-guest complexes formed in solution are also stable for characterization by ESI in the gas phase. This paper reports the first investigations to characterize the stability of three inclusion complexes between beta-cyclodextrin (beta-CD) and three model "guest" molecules, by determining the cyclodextrin compound complex stability constant (K(st)) with the use of mass spectrometric studies. The relative signal intensity of the complexes were monitored in the positive ion mode by mixing each "guest" molecule with an up to 50-fold molar excess of betaCD. A novel linear equation, similar to Benesi-Hildebrand, was derived allowing the determination of K(st) for 1:1 stoichiometry in all complexes. These values were compared with the K(st) obtained by spectrophotometric experiments and they were evaluated to be slightly different, indicating the validity of the described method.  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(6):975-983
The inclusion complexes formed between two chiral N-imidazole derivatives and four cyclodextrins (α-, β-, γ-, and highly sulfated-β-CDs) were investigated by one- and two-dimensional 1H NMR. With the additional results of an ESI-MS study, a 1:1 stoichiometry was proven for all the complexes studied. The complexes were also characterized in terms of binding constants and the results were compared to those obtained by CD-EKC. An identical affinity order for the various CDs was obtained with both techniques. Furthermore, the affinity order for both enantiomers determined by their binding constants values is confirmed by the enantiomer migration orders previously determined by CD-EKC. The structural data obtained by the 2D-ROESY experiments allowed us to understand the interaction mechanisms and to propose, for different analyte structures, theoretical models of inclusion orientation in the CD cavity. These models are in accordance with our previous hypothesis based on the analyte structure–enantioseparation relationships and the thermodynamic parameters determined by CD-EKC.  相似文献   

20.
EPR spectroscopy has been employed to investigate the formation of complexes between heptakis-(2,6-O-dimethyl)-beta-cyclodextrin (DM-beta-CD) and different enantiomeric pairs of chiral nitroxides of general structure PhCH2NO.CH(R)R'. Accurate equilibrium measurements of the concentrations of free and included radicals afforded the binding constant values for these nitroxides. The relationship between the stereochemistry of the DM-beta-CD complexes and the thermodynamics of complexation was elucidated by correlating EPR data with 1H-1H NOE measurements carried out on the complexes between DM-beta-CD and the structurally related amine precursors of nitroxides. NOE data suggested that inclusion of the stereogenic center in the DM-beta-CD cavity occurs only when the R substituent linked to the chiral carbon contains an aromatic ring. For these types of complexes, molecular dynamics simulation indicated that the depth of penetration of the stereogenic center into the cyclodextrin cavity is determined by the nature of the second substituent (R') at the asymmetric carbon and is responsible for the observed chiral selectivity. Analysis of mass spectra showed that, for the presently investigated amines, electrostatic external adducts of CDs with protonated amines are detected by ESI-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号