首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Nanopowders of metals and metal oxides have been produced using an arc operated between a refractory rod anode and a hollow cathode (J. Haidar in A method and apparatus for production of material vapour, Australian Patent No. 756273, 1999). the arc attachment to the anode is through a small region of molten metal located at the tip of the rod anode. Heat from the arc evaporates the molten metal and the vapour is passed through the arc plasma before condensing into sub-micron particles downstream of the cathode. A precursor metal is continuously fed onto the tip of the anode to maintain the molten metal region and compensate for losses of materials due to evaporation. The particle size of the produced powder depends on the pressure in the arc chamber and for production of nanoparticles in the range below 100 nm we use a pressure of 100 torr. Aluminium has been used as a precursor material, leading to production of aluminium metal nanopowders when the arc is operated in argon and to aluminium oxide nanopowders for operation in air. For operation in air, the products are made of γ-Al2O3.  相似文献   

2.
Metal vapour from the weld pool in double electrodes tungsten inert gas welding is taken into account by a unified numerical model including the arc plasma and the weld pool. The thermodynamic properties and transport coefficients of the arc plasma are dependent on both the local temperature and the mass fraction of the metal vapour. A second viscosity approximation is used to describe the diffusion coefficient of the metal vapour in the arc plasma. The temperature and the flow fields of both the arc plasma and the weld pool are calculated together with the metal vapour concentration. The simulated results are presented for the cases of 3 and 9 mm electrode separation, respectively. It is shown that the metal vapour behavior is much different in these two cases. In the case of 3 mm electrode separation, the metal vapour above the mass fraction of 0.2% is concentrated just above the weld pool surface, while in the case of 9 mm electrode separation, the metal vapour is diffused to the most region of the arc plasma for the same range of mass fraction. In addition, the arc plasma temperature as well as the heat flux at the weld pool is constricted by the presence of the metal vapour. The constricted heat flux at the weld pool results in an increase in the temperature of the weld pool about 100 K or less but a slight shrinkage of the weld pool shape.  相似文献   

3.
As an object of nitrogen plasma operated with an arc current to 200 A, an arc length about 35 mm, we evaluated heating efficiency from arc plasma to the molten copper anode and the water-cooled solid copper anode. The heating efficiency to the molten anode is smaller than that to the solid anode by about 20%. We focused on copper vapor concentration in plasma as a possible cause for a decrease in heating efficiency, and estimated it by means of the Cu and the N spectral line measurement. Simple numerical analysis, taking into consideration measured copper vapor concentration, suggested that an increase in electrical conductivity due to copper vapor, made the plasma temperature change and consequently caused a decrease in thermal conductivity. We concluded that one of the reasons for a decrease in heating efficiency would be caused by copper vapor contamination.  相似文献   

4.
Experimental studies of a free-burning, high-intensity argon arc operated at 800 Torr with a solid, molten, or resolidified copper anode demonstrate that the cathode region is not affected by Cu vapor from the anode. Also Cu vapor concentrations in the arc core (beyond 1 mm from the anode surface) are negligible. In contrast, there is a strong effect of the Cu vapor on the anode region of the arc. The arc fringes become electrically conducting due to the presence of Cu vapor, resulting in a flattening of the current density distribution and a corresponding drop of the temperature in the arc core. At the same time, the overall arc voltage shows a slight drop (<1 V). In the case of the resolidified anode, the overall arc voltage increases, which seems to be associated with the distribution of the stagnation flow in front of the anode due to a dip in the center of the anode.  相似文献   

5.
A specially designed plasma chamber was constructed to study the operating characteristics of a dc plasma-transferred arc of argon, struck between a fluid convective cathode and a water-cooled anode. The arc voltage increased markedly with arc length and with an increase in the inlet velocity of the argon flow past the cathode tip, and much less with an increase in current. Radiation from the plasma column to the chamber walls and transfer of energy to the anode were the two principal modes of transfer of the arc energy. The former was dominant in the case of long arcs and at high inlet argon velocities. At the anode, the major contribution was from electron transfer, which occurred on a very small area of the anode (~5 mm in diameter). Convective heat transfer from the plasma was somewhat less. In all cases, the arc energy contributions to cathode cooling and to the exit gas enthalpy were small. From total heat flux and radiative heat transfer measurements, it was estimated that the plasma temperature just above the anode was in the range 10,000–12,000 K. Preliminary experiments with an anode consisting of molten copper showed that the arc root was no longer fixed but moved around continuously. The arc was othwewise quite stable, and its operating characteristics differed little from those reported for solid anodes, in spite of the greater extent of metal vaporization.  相似文献   

6.
A special bi-anode plasma torch that can change the anode arc root position without changing working gas flow rate has been developed to investigate the effect of anode arc root position on the behavior of the plasma jet. It has two nozzle-shaped anodes at different axial distances from the cathode tip. The arc root can be formed at anodes either close to the cathode tip (anode I) or far away from it (anode II) to obtain different attachment positions and arc voltages. The characteristics of pure argon plasma jets operated in different anode modes were measured in the field free region by using an emalpy probe, and the thermal efficiency of the torch was determined by measuring the temperature differences between cooling water flowing in and out of the torch. The results show that compared with the normal arc operated in anode I mode, the elongated arc operated in anode II mode significantly reduced the plasma energy loss inside the torch, resulting in a higher temperature and a higher velocity of the plasma jet in the field free region.  相似文献   

7.
A free-burning, high-intensity argon arc at atmospheric pressure was modeled during the evaporation of copper vapor from the anode to study the impact of the vapor to the entire plasma region. A uniform and a Gaussian radial velocity distribution are adopted for the copper vapor at the anode boundary with a net mass flow rate known from the experiment. The effect of both velocity distributions on the temperature, mass flow, current flow, and Cu concentration was studied for the entire plasma region. The cathode region is not affected by the evaporated copper, and the Cu vapor concentration in the arc core is negligible.  相似文献   

8.
Transmission laser welding of plastic is typically achieved by incorporating a laser absorbing dye into one of the two pieces of plastic one wishes to weld together and mediating the welding process using a laser emitting light at a suitable wavelength. Desirable properties of laser absorbing dyes include: (1) the dye is colorless in the visible region but absorbs strongly in the region at the wavelength where the laser emits, (2) the dye has a good conversion of the energy from the laser to heat, (3) the dye is stable enough to be incorporated into the molten plastic, (4) the dye is soluble in the plastic of choice to give an even distribution in the plastic, and (5) the dye is nontoxic. Here, we explore an alternative approach to achieve laser welding of colorless plastics using a laser dye that is colored, but that can be bleached after the welding process. Nonsymmetrical squaraine dyes were prepared by condensation of squaric acid and two equivalents of various 3,5-dimethoxy-N,N-dialkylanilines. After the incorporation into polyethylene and laser welding, the plastic was bleached either by heat treatment or by irradiation with a high pressure Xe-lamp giving colorless polyethylene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2245–2254  相似文献   

9.
The present modeling of a free-burning argon arc accounts for copper vapor contamination from the anode. Simulations are made for an atmospheric arc that has a length of 10 mm and an electric current of 200 amps. Predicted results for two different anode evaporation rates are compared to those from a pure argon arc with no copper vapor contamination. Copper vapor concentration, temperature, electric potential, and current density profiles are presented. Included in this analysis are radiation losses from both the argon and copper by using recently calculated net emission coefficients. It was found that evaporation of copper from the anode results in a cooling of the arc in a region close to the anode, but has an insignificant influence on the arc close to the cathode. Due to the arc flow characteristics most of the copper vapor tends to be confined to the anode region.  相似文献   

10.
The influence of two nozzle geometries and three process parameters (arc current, arc length and plasma sheath gas flow rate) on the energy distribution for an argon transferred arc is investigated. Measurements are reported for a straight bore cylindrical and for a convergent nozzle, with arc currents of 100 A and 200 A and electrode gaps of 10 mm and 20 mm. These correspond to typical operating parameters generally used in plasma transferred arc cutting and welding operations. The experimental set up consisted of three principal components: the cathode-torch assembly, the external, water-cooled anode, and the reactor chamber. For each set of measurements the power delivered to each system component was measured through calorimetric means, as function of the arc’s operating conditions. The results obtained from this study show that the shape of the cathode torch nozzle has an important influence on arc behaviour and on the energy distribution between the different system components. A convergent nozzle results in higher arc voltages, and consequently, in higher powers being generated in the discharge for the same applied arc current, when compared to the case of a straight bore nozzle. This effect is attributed to the fluidynamic constriction of the arc root attachment, and the consequential increase in the arc voltage and thus, in the Joule heating. The experimental data so obtained is compared with the predictions of a numerical model for the electric arc, based on the solution of the Navier–Stokes and Maxwell equations, using the commercial code FLUENT©. The original code was enhanced with dedicated subroutines to account for the strong temperature dependence of the thermodynamic and transport properties under plasma conditions. The computational domain includes the heat conduction within the solid electrodes and the arc-electrode interactions, in order to be able to calculate the heat distribution in the overall system. The level of agreement achieved between the experimental data and the model predictions confirms the suitability of the proposed, “relatively simple” model as a tool to use for the design and optimization of transferred arc processes and related devices. This conclusion was further supported by spectroscopic measurements of the temperature profiles present in the arc column and image analysis of the intensity distribution within the arc, under the same operating conditions.  相似文献   

11.
An economic process for manufacturing of molten carbonate fuel cells was developed. This process consisted of fabricating the matrix by simply cutting it from a highly porous part with the geometry like an insulator brick, brush painting of the cathode layer followed by sintering and deposition of anode layer through thermal spray process. In order to manage the electrolyte content in the matrix and electrodes, coating of outer surfaces of the produced matrix with alumina slurry provided the required pores with small size at the interfaces with the electrodes. The polarization curves of the cells with alumina slurry coating and without it were not significantly different. The produced layer with small pores at the matrix outer surfaces caused the vaporization of the molten carbonate salt electrolyte to be reduced from 22.9% to 14.4% of initially infiltrated in salt weight content within 100 h of heat treating at 650 °C. This is at the same time to have the benefit of larger supply of electrolyte due to the application of highly porous matrix.  相似文献   

12.
Direct current plasma torches for plasma spraying applications generate electric arc instabilities. The resulting fluctuations of input electrical power hamper a proper control of heat and momentum transfers to materials for coating deposition. This paper gives an overview of major issues about arc instabilities in conventional DC plasma torches. Evidences of arc fluctuations and their consequences on plasma properties and on material treatments are illustrated. Driving forces applied to the arc creating its motion are described and emphasis is put on the restrike mode that depends on the arc reattachment and the boundary layer properties around the arc column. Besides the arc root shown as a key region of instability, the Helmholtz oscillation is also described and accounts for the whole plasma torch domain that can generate pressure fluctuations coupled with voltage ones.  相似文献   

13.
The influence of tungsten carbide and titanium nitride nanoparticles on the structure and properties of the weld metal of welded joints made by automatic twin submerged arc welding is considered. The nanoparticles have been introduced into the weld pool as a part of the “master alloy” based on nickel powder (PNE-1 according to GOST 9722). It has been shown that modifying the weld metal with tungsten carbide nanoparticles holds promise for enhancing the impact strength. In addition, it has been found that titanium nitride is prone to dissociation under the same conditions. However, microalloying with titanium, which is due to the release of titanium from the nitride, leads to an increase in the impact strength of the weld metal.  相似文献   

14.
Determination of the arc-root position in a DC plasma torch   总被引:4,自引:0,他引:4  
The behavior of an arc operated in the nontransferred mode with a conical-shaped cathode and a nozzle-shaped anode is studied by applying general tyro-dimensional conservation equations and auxiliary relations for the simulation of arc channel flows. The position of the arc-root attachment at the anode surface is determined by using Steenbeck's minimum principle, which postulates a minimum arc voltage for a given current and certain given boundary conditions. The overall effects of the anode-arc root on the plasma flow are, studied by comparing the results with those of the transferred mode of operation. Specific arc-channel diameters are chosen in the simulation in order to verify flit, numerical model through comparisons with experimental results. The results show that Steenbeck's minimum principle is useful for determining the position of the arc-root attachment at the anode surface. Application of this method for control of the arc-anode attachment may be valuable in the design and operation of plasma spray torches to avoid jet instabilities.  相似文献   

15.
Current user's requirements for excellent product quality means that producers must discover the isothermal casting conditions which trill lead to top operating performance in the continuous casting process. In response to this requirement. a high-powered A. C. plasma arc heating system was adopted for the No. 4 Continuous Caster (No. 4CC) put into operation at Kakogawa Works. This heating system is a single-phase A.C. plasma type with two torches. This report describes research on the molten steel heating technique utilized by the A. C. plasma system, the effects of tundish atmosphere on the characteristics of plasma electric potter, and the counter- measures devised to increase the arc voltage using a suitable torch structure.  相似文献   

16.
The widespread application of electric arcs is closely related to the continuous research interest over the course of many years. The present survey is concerned with chemical and excitation nonequilibrium in atmospheric pressure argon plasma generated between a sharpened tungsten cathode and a flat copper anode at current levels of 35–200 A. Advanced fully nonequilibrium modelling is applied to simulate the combination of the wall-confined arc plasma column and the open region in front of the anode in a self-consistent manner in order to pay tribute to the tremendous research work that E. Pfender has done. The new modelling results are presented along with experimental and modelling results of the studies of E. Pfender and his group and other works of relevance.  相似文献   

17.
A commercial torch has been modified to introduce an additional anti-vortex and shroud gas flow to counter the detrimental effects brought about by the vortex plasma gas flow which is used to stabilize the cathode arc attachment and to increase the anode life. Deposition efficiency and coating quality are used as criteria to judge the modified versus the nonmodified torch. High-speed videography and computerized image analysis systems are used to determine the particle trajectories, velocities, and the plasma jet geometry. The results show that the additional anti-vortex and shroud gas flow to the torch can keep the particles closer to the torch axis and reduce the amount of entrainment of cold air into the plasma jet. The consequence is that deposition efficiency and coating quality are substantially improved.  相似文献   

18.
The volatilization of quartz in a transferred arc plasma followed byquench and recondensation is a promising route to the production offumed silica. In this work, an existing model of a transferred arcwas modified and combined with a newly developed model of a moltensilica anode to predict the behavior of a transferred arc evaporatoras a function of current and plasma gas flow rate. The model predictstemperature, current, and flow fields in both the plasma and anode aswell as evaporation rates. Although quantitative agreement withexperimental results was not possible because of insufficient propertydata for silica at high temperature, the results were within an orderof magnitude of those measured experimentally. The model developed isuseful for the design and scaleup of this type of reactor.  相似文献   

19.
A theoretical model of a capillary driven flow of liquid metal through topography features of rough surfaces has been verified by a study of molten solder (Sn-Pb) spreading over Cu(6)Sn(5)/Cu(3)Sn/Cu intermetallic (IMC) substrates. Flow through microgrooves over a rough IMC substrate is considered as spreading through an isotropic porous medium featuring a network of open microgrooves having predefined free-flow area cross sections. The relative margin of deviation between theoretically predicted and empirically determined locus of points of triple line locations is within the range of 5-15%. This margin supports the validity of the developed, analytically formulated square root power law model for a whole spreading domain in terms of (i) geometry of topographical features of the rough surface (i.e., effective intrinsic permeability, porosity/tortuosity, and microchannel cross section geometry), (ii) wetting/spreading features (equilibrium contact angle and filling factor), and (iii) molten metal/substrate properties (viscosity and surface tension). Experimental data involving triple line kinetics represent the data set of locations of the triple line versus time obtained by in situ monitoring of the spreading of molten metal systems over IMC substrates by using the controlled atmosphere hot stage microscopy.  相似文献   

20.
During plasma spray process, many intrinsic operating parameters allow tailoring in-flight particle characteristics (temperature and velocity) by controlling the plasma jet properties, thus affecting the final coating characteristics. Among them, plasma flow mass enthalpy, flow thermal conductivity, momentum density, etc. result from the selection of extrinsic operating parameters such as the plasma torch nozzle geometry, the composition and flow rate of plasma forming gases, the arc current intensity, beside the coupled relationships between those operating parameters make difficult in a full prediction of their effects on coating properties. Moreover, temporal fluctuations (anode wear for example) require “real time” corrections to maintain particle characteristic to targeted values. An expert system is built to optimize and control some of the main extrinsic operating parameters. This expert system includes two parts: (1) an artificial neural network (ANN) which predicts an extrinsic operating window and (2) a fuzzy logic controller (FLC) to control it. The paper details the general architecture of the system, discusses its limits and the typical characteristic times. The result shows that ANN can predict the characteristics of particles in-flight from coating porosity within maximal error 3 and 2 % in temperature and velocity respectively. And ANN also can predict the operating parameters from in-flight particle characteristics with maximal error 2.34, 4.80 and 8.66 % in current intensity, argon flow rate, and hydrogen flow rate respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号