首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show here that baseline separation of dansylated estrone, 17β-estradiol, and 17α-estradiol can be done, contrary to previous reports, within a short run time on a single RP-LC analytical column packed with particles bonded with phenyl-hexyl stationary phase. The chromatographic method coupled with isotope dilution tandem MS offers a simple assay enabling the simultaneous analysis of these analytes. The method employs 13C-labeled estrogens as internal standards to eliminate potential matrix effects arising from the use of deuterated estrogens. The assay also offers adequate accuracy and sensitivity to be useful for biological samples. The practical applicability of the validated method is demonstrated by the quantitative analyses of in vivo samples obtained from rats treated with Premarin®.
Figure
Quantification of estrogens from rat samples by LC–MS/MS  相似文献   

2.
A novel stationary phase based on quinolinium ionic liquid-modified silica was prepared and evaluated for high-performance liquid chromatography. The stationary phase was investigated via normal-phase (NP), reversed-phase (RP), and anion-exchange (AE) chromatographic modes, respectively. Polycyclic aromatic hydrocarbons, phthalates, parabens, phenols, anilines, and inorganic anions were used as model analytes in chromatographic separation. Using the newly established column, organic compounds were separated successfully by both NP and RP modes, and inorganic anions were also separated completely by AE mode. The obtained results indicated that the stationary phase could be applied in different chromatographic modes, with multiple-interaction mechanism including van der Waals forces (dipole–dipole, dipole–induced dipole interactions), hydrophobic, ππ stacking, electrostatic forces, hydrogen bonding, anion-exchange interactions, and so on. The column packed with the stationary phase was applied to analyze phthalates and parabens in hexane extracts of plastics. Tap water and bottled water were also analyzed by the column, and nitrate was detected as 20.1 and 13.8 mg L?1, respectively. The results illustrated that the stationary phase was potential in practical applications.
Figure
?  相似文献   

3.
We report a chiral high-performance liquid chromatographic enantioseparation method for free α-aminophosphonic, β-aminophosphonic, and γ-aminophosphonic acids, aminohydroxyphosphonic acids, and aromatic aminophosphinic acids with different substitution patterns. Enantioseparation of these synthons was achieved by means of high-performance liquid chromatography on CHIRALPAK ZWIX(+) and ZWIX(-) (cinchona-based chiral zwitterionic ion exchangers) under polar organic chromatographic elution conditions. Mobile phase characteristics such as acid-to-base ratio, type of counterion, and solvent composition were systematically varied in order to investigate their effect on the separation performance and to achieve optimal separation conditions for the set of analytes. Under the optimized conditions, 32 of 37 racemic aminophosphonic acids studied reached baseline separation when we employed a single generic mass-spectrometry-compatible mobile phase, with reversal of the elution order when we used (+) and (-) versions of the chiral stationary phase.
Figure
New zwitterionic ion-exchangers can separate free amino phosphonic acids and a change from Chiralpak ZWIX(+) to ZWIX(-) allows reversal of enantiomer elution order  相似文献   

4.
Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.
Figure
Schematic representations of the online 3D-nano-HPLC/nano-ESI-Q-TOF-MS/MS setup; LP loading pump, NP nano-pump  相似文献   

5.
Elemental composition assignment confidence in mass spectrometry is typically assessed by monoisotopic mass accuracy. For a given mass accuracy, resolution and detection of other isotopologues can further narrow the number of possible elemental compositions. However, such measurements require ultrahigh resolving power and high dynamic range, particularly for compounds containing low numbers of nitrogen and oxygen (both 15N and 18O occur at less than 0.4 % natural abundance). Here, we demonstrate validation of molecular formula assignment from isotopic fine structure, based on ultrahigh resolution broadband Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Dynamic range is enhanced by external quadrupole and internal stored waveform inverse Fourier transform (SWIFT) isolation to facilitate detection of low abundance heavy atom isotopologues.
Figure
?  相似文献   

6.
A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A “green” mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04 % (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15?×?4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min?1. The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid–base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, ?0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914–0.99997, n?=?6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100?±?5 % for all compounds. The intraday method precision was determined as RSD, and the values were lower than 1.00 %.
Green chromatography approach – advantages of the technique  相似文献   

7.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

8.
9.
The on-line combination of comprehensive two-dimensional liquid chromatography (LC?×?LC) with the 2,2′-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid (ABTS) radical scavenging assay was investigated as a powerful method to determine the free radical scavenging activities of individual phenolics in natural products. The combination of hydrophilic interaction chromatography (HILIC) separation according to polarity and reversed-phase liquid chromatography (RP-LC) separation according to hydrophobicity is shown to provide much higher resolving power than one-dimensional separations, which, combined with on-line ABTS detection, allows the detailed characterisation of antioxidants in complex samples. Careful optimisation of the ABTS reaction conditions was required to maintain the chromatographic separation in the antioxidant detection process. Both on-line and off-line HILIC?×?RP-LC–ABTS methods were developed, with the former offering higher throughput and the latter higher resolution. Even for the fast analyses used in the second dimension of on-line HILIC?×?RP-LC, good performance for the ABTS assay was obtained. The combination of LC?×?LC separation with an on-line radical scavenging assay increases the likelihood of identifying individual radical scavenging species compared to conventional LC–ABTS assays. The applicability of the approach was demonstrated for cocoa, red grape seed and green tea phenolics.
Figure
On-line HILIC×RP-LC–ABTS analysis of cocoa proanthocyanidins  相似文献   

10.
In the environment, the methylation of metal(loid)s is a widespread phenomenon, which enhances both biomobility as well as mostly the toxicity of the precursory metal(loid)s. Different reaction mechanisms have been proposed for arsenic, but not really proven yet. Here, carbon isotope analysis can foster our understanding of these processes, as the extent of the isotopic fractionation allows to differentiate between different types of reaction, such as concerted (SN2) or stepwise nucleophilic substitution (SN1) as well as to determine the origin of the methyl group. However, for the determination of the kinetic isotope effect the initial isotopic value of the transferred methyl group has to be determined. To that end, we used hydroiodic acid for abstraction of the methyl group from methylcobalamin (CH3Cob) or S-adenosyl methionine (SAM) and subsequent analysis of the formed methyl iodide by gas chromatography (GC) isotope ratio mass spectrometry (IRMS). In addition, three further independent methods have been investigated to determine the position-specific δ 13C value of CH3Cob involving photolytic cleavage with different additives or thermolytic cleavage of the methyl-cobalt bonding and subsequent measurement of the formed methane by GC-IRMS. The thermolytic cleavage gave comparable results as the abstraction using HI. In contrast, photolysis led to an isotopic fractionation of about 7 to 9 ‰. Furthermore, we extended a recently developed method for the determination of carbon isotope ratios of organometal(loid)s in complex matrices using hydride generation for volatilization and matrix separation before heart-cut GC and IRMS to the analysis of the low boiling partly methylated arsenicals, which are formed in the course of arsenic methylation. Finally, we demonstrated the applicability of this methodology by investigation of carbon fractionation due to the methyl transfer from CH3Cob to arsenic induced by glutathione.
Position-specific isotope analysis of the methyl group in CH3Cob by abstraction using HI and subsequent analysis of formed CH3I by GC-IRMS  相似文献   

11.
Quantitative detection of phosphorylation levels is challenging and requires an expertise in both stable isotope labeling as well as enrichment of phosphorylated peptides. Recently, a microfluidic device incorporating a nanoliter flow rate reversed phase column as well as a titania (TiO2) enrichment column was released. This HPLC phosphochip allows excellent recovery and separation of phosphorylated peptides in a robust and reproducible manner with little user intervention. In this work, we have extended the abilities of this chip by defining the conditions required for on-chip stable isotope dimethyl labeling allowing for automated quantitation. The resulting approach will make quantitative phosphoproteomics more accessible.
A method was developed that allows the automated, online, dimethyl labeling and TiO2 enrichment of phosphopeptides from complex samples on a three-sectioned microfluidic HPLC phosphochip. The method is shown to allow quantification over at least one order of magnitude and provides a robust approach for fully automated online quantification of phosphopeptides.  相似文献   

12.
A method for the simultaneous speciation of selenoproteins and selenometabolites in mouse plasma has been developed based on in series two-dimensional size exclusion and affinity high-performance liquid chromatography (2D/SE-AF-HPLC), using two columns of each type, and hyphenation to inductively coupled plasma-(quadrupole) mass spectrometry (ICP-QMS). The method allows the quantitative determination of selenoprotein P (SeP), extracellular glutathione peroxidase (eGPx), selenoalbumin (SeAlb), and selenometabolites in mouse plasma using species-unspecific isotope dilution (SUID). The 2D chromatographic separation is proposed to remove typical spectral interferences in plasma from chloride and bromide on 77Se (40Ar37Cl) and 82Se (81Br1H). In addition, the approach increases chromatographic resolution allowing the separation of eGPx from Se metabolites of low molecular mass. The method is robust, reliable, and fast with a typical chromatographic runtime less than 20 min. Precision in terms of relative standard deviation (n?=?5) is in the order of 4 %, and detection limits are in the range of 0.2 to 1.0 ng Se g?1. Method accuracy for determination of total protein bound to Se was assessed by analyzing human serum reference material (BCR-637) certified for total Se content, and latterly applied to mouse plasma (Mus musculus). In summary, a reliable speciation method for the analysis of eGPx, selenometabolites, SeP, and SeAlb in plasma/serum samples is proposed for the first time and is applicable to the evaluation of Se status in human in clinical studies and other mammals for environmental or toxicological assessment.
Figure
Simultaneous speciation of selenoproteins and selenometabolites in serum and plasma using 2D/SE-AF-HPLC-(SUID)-ICP-ORS-qMS  相似文献   

13.
Reversed-phase liquid chromatographic (RPLC) separation of isomers and homologues of similar polarity is challenging. Tocopherol isomers and homologues are one such example. α, β, γ, and δ-tocopherols have been successfully separated by RPLC on triacontyl (C30) stationary phase. System suitability was tested by using four mobile phases, and observed chromatographic separations of β and γ-tocopherols were compared. Comparison indicated that methanol–tert-butyl methyl ether (TBME) 95:5 (v/v) at a flow rate of 0.75 mL min?1 was the best mobile phase. Detection systems were also evaluated on the basis of limit of quantification; it was concluded that fluorescence detection was best. The method was validated by analysis of two homologues and two isomers of tocopherol in sesame, maize, and soybean samples. MS coupled with an ESI interface in negative-ion mode [M ? H]? was used for identification of individual components. It was concluded that addition of TBME to methanol was required to enhance the separation of β and γ-tocopherols, although methanol alone provided similar results. The applicability of the method to cereal, pulse, and oilseed samples was confirmed. The reproducibility of the procedure was good, with relative standard deviations in the range 1.7–3.9 %. Recovery of tocopherols added to sesame samples ranged from 91 to 99 %.
Figure
?  相似文献   

14.
This paper investigates the performance of a column classification system developed at the Katholieke Universiteit Leuven applied to pharmaceutical chromatographic analyses. The liquid chromatography assay of lamotrigine and related compounds was carried out according to the method prescribed in the European Pharmacopoeia monograph, using 28 brands of stationary phases. A ranking was built based on the F KUL value calculated against the selected reference column, then compared with the column test performance established for the stationary phases studied. Therefore, the system suitability test prescribed by the European Pharmacopoeia in order to distinguish between suitable or unsuitable columns for this analysis was evaluated. Moreover, it was examined whether the classes of the stationary phases, determined using test parameter results, contain either suitable or unsuitable supports for the lamotrigine separation. This assay was performed using chemometric a technique, namely factor analysis.
Figure
Chemometric evaluation of the column classiffication system in pharmaceutical practice  相似文献   

15.
Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(d-Cam)1/2(bdc)1/2(tmdpy) (d-Cam?=?d-camphoric acid; bdc?=?1,4-benzenedicarboxylate; tmdpy?=?4,4′-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(d-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m?×?530 μm i.d.) and column B (2 m?×?75 μm i.d.), were prepared by a dynamic coating method using Co-(d-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal–organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n?=?6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.
Figure
?  相似文献   

16.
To extract a genuine peptide signal from a mass spectrum, an observed series of peaks at a particular mass can be compared with the isotope distribution expected for a peptide of that mass. To decide whether the observed series of peaks is similar to the isotope distribution, a similarity measure is needed. In this short communication, we investigate whether the Mahalanobis distance could be an alternative measure for the commonly employed Pearson’s χ2 statistic. We evaluate the performance of the two measures by using a controlled MALDI-TOF experiment. The results indicate that Pearson’s χ2 statistic has better discriminatory performance than the Mahalanobis distance and is a more robust measure.
Figure
?  相似文献   

17.
The development of automated non-targeted workflows for small molecule analyses is highly desirable in many areas of research and diagnostics. Sufficient mass and chromatographic resolution is necessary for the detectability of compounds and subsequent componentization and interpretation of ions. The mass accuracy and relative isotopic abundance are critical in correct molecular formulae generation for unknown compounds. While high-resolution instrumentation provides accurate mass information, sample complexity can greatly influence data quality and the measurement of compounds of interest. Two high-resolution instruments, an Orbitrap and a Q-TOF, were evaluated for mass accuracy and relative isotopic abundance with various concentrations of a standard mixture in four complex sample matrices. The overall average ± standard deviation of the mass accuracy was 1.06 ± 0.76 ppm and 1.62 ± 1.88 ppm for the Orbitrap and the Q-TOF, respectively; however, individual measurements were ± 5 ppm for the Orbitrap and greater than 10 ppm for the Q-TOF. Relative isotopic abundance measurements for A + 1 were within 5% of the theoretical value if the intensity of the monoisotopic peak was greater than 1E7 for the Orbitrap and 1E5 for the Q-TOF, where an increase in error is observed with a decrease in intensity. Furthermore, complicating factors were found in the data that would impact automated data analysis strategies, including coeluting species that interfere with detectability and relative isotopic abundance measurements. The implications of these findings will be discussed with an emphasis on reasonable expectations from these instruments, guidelines for experimental workflows, data analysis considerations, and software design for non-targeted analyses.
Figure
?  相似文献   

18.
Endocannabinoids (ECs) are endogenous compounds that interact with type-1 and type-2 cannabinoid receptors (CB1 and CB2), as well as non-cannabinoid receptors. The multitude of roles attributed to ECs makes them an emerging target of pharmacotherapy for a number of disparate diseases. Here a high-throughput bioanalytical method based on micro SPE (μ-SPE) followed by LC-MS/MS analysis for the simultaneous determination of the two major endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide, AEA) in human plasma is presented. The chromatographic conditions obtained with the fused-core column allowed a good separation in 10 min also of the AG isomers. A very simple and reliable extraction has been optimised by means of C18-modified tips: it requires only 100 μL of plasma and allows the use of minimal volumes of organic solvent. The present method allows a rapid and effective clean-up, which also minimises the isomerisation of 2-AG. The whole procedure has been validated following the FDA guidelines for bioanalytical methods validation: the satisfactory recovery values, the negligible matrix effect and the good values of accuracy and reproducibility make it a simple and high-throughput analytical tool for clinical and biochemical studies on endocannabinoid signaling in humans.
Figure
Determination of the two major endocannabinoids in human plasma by μ-SPE followed by HPLC-MS/MS  相似文献   

19.
This paper describes an analytical three-capillary viscometer detector that eliminates the traditional viscometer ??hold-up?? volume (commonly found in four-capillary designs) while maintaining cancellation of short-term pump noise and long-term baseline drift of temperature and solvent flow rate that are inherent in chromatography systems. This improvement allows a staggered sample injection approach in chromatography, yielding a significant increase in sample throughput by cutting down the chromatographic run time. It also provides a more robust design as it does not require capillary rebalancing, complex purging, flushing or changing the hold-up volume to accommodate long-term chromatographic use.
Example of a four-capillary viscometer in a quad-detector GPC system.  相似文献   

20.
Reversed-phase liquid chromatography is the most commonly used separation method for shotgun proteomics. Nanoflow chromatography has emerged as the preferred chromatography method for its increased sensitivity and separation. Despite its common use, there are a wide range of parameters and conditions used across research groups. These parameters have an effect on the quality of the chromatographic separation, which is critical to maximizing the number of peptide identifications and minimizing ion suppression. Here we examined the relationship between column lengths, gradient lengths, peptide identifications, and peptide peak capacity. We found that while longer column and gradient lengths generally increase peptide identifications, the degree of improvement is dependent on both parameters and is diminished at longer column and gradients. Peak capacity, in comparison, showed a more linear increase with column and gradient lengths. We discuss the discrepancy between these two results and some of the considerations that should be taken into account when deciding on the chromatographic conditions for a proteomics experiment.
Figure
The effects of column and gradient lengths on the performance of nanoflow LC-MS/MS is examined in complex proteomic samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号