首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a case study for Bayesian analysis and proper representation of distributions and dependence among parameters when calibrating process-oriented environmental models. A simple water quality model for the Elbe River (Germany) is referred to as an example, but the approach is applicable to a wide range of environmental models with time-series output. Model parameters are estimated by Bayesian inference via Markov Chain Monte Carlo (MCMC) sampling. While the best-fit solution matches usual least-squares model calibration (with a penalty term for excessive parameter values), the Bayesian approach has the advantage of yielding a joint probability distribution for parameters. This posterior distribution encompasses all possible parameter combinations that produce a simulation output that fits observed data within measurement and modeling uncertainty. Bayesian inference further permits the introduction of prior knowledge, e.g., positivity of certain parameters. The estimated distribution shows to which extent model parameters are controlled by observations through the process of inference, highlighting issues that cannot be settled unless more information becomes available. An interactive interface enables tracking for how ranges of parameter values that are consistent with observations change during the process of a step-by-step assignment of fixed parameter values. Based on an initial analysis of the posterior via an undirected Gaussian graphical model, a directed Bayesian network (BN) is constructed. The BN transparently conveys information on the interdependence of parameters after calibration. Finally, a strategy to reduce the number of expensive model runs in MCMC sampling for the presented purpose is introduced based on a newly developed variant of delayed acceptance sampling with a Gaussian process surrogate and linear dimensionality reduction to support function-valued outputs.  相似文献   

2.
盛峥 《中国物理 B》2013,(2):584-589
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.  相似文献   

3.
盛峥 《中国物理 B》2013,22(2):29302-029302
Estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem. This paper deals with the RFC problem in a Bayesian framework. It uses unbiased Markov Chain Monte Carlo (MCMC) sampling technique, which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework. In contrast to the global optimization algorithm, the Bayesian-MCMC can obtain not only the approximate solutions, but also the probability distributions of the solutions, that is, uncertainty analyses of solutions. The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar sea-clutter data. Reference data are assumed to be simulation data and refractivity profiles obtained with a helicopter. Inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.  相似文献   

4.
A Bayesian tutorial for data assimilation   总被引:1,自引:0,他引:1  
Data assimilation is the process by which observational data are fused with scientific information. The Bayesian paradigm provides a coherent probabilistic approach for combining information, and thus is an appropriate framework for data assimilation. Viewing data assimilation as a problem in Bayesian statistics is not new. However, the field of Bayesian statistics is rapidly evolving and new approaches for model construction and sampling have been utilized recently in a wide variety of disciplines to combine information. This article includes a brief introduction to Bayesian methods. Paying particular attention to data assimilation, we review linkages to optimal interpolation, kriging, Kalman filtering, smoothing, and variational analysis. Discussion is provided concerning Monte Carlo methods for implementing Bayesian analysis, including importance sampling, particle filtering, ensemble Kalman filtering, and Markov chain Monte Carlo sampling. Finally, hierarchical Bayesian modeling is reviewed. We indicate how this approach can be used to incorporate significant physically based prior information into statistical models, thereby accounting for uncertainty. The approach is illustrated in a simplified advection–diffusion model.  相似文献   

5.
王忠淼  刘军  景越峰  刘进  管永红 《强激光与粒子束》2018,30(11):114004-1-114004-7
针对闪光图像得到的光程数据,采用贝叶斯分层模型建立了后验概率模型,运用Gibbs抽样动态构造马尔可夫链;进而获得了关于线吸收系数的统计结果及其不确定度,并与约束共轭梯度(CCG)方法进行对比分析。数值实验结果表明,马尔可夫链蒙特卡罗(MCMC)方法对理想光程图像的重建结果与真值近似完全一致;在含模糊和噪声时,重建结果与CCG方法相当;当含模糊且噪声干扰较大时,MCMC方法的重建结果要略优于CCG;更重要的是MCMC方法能够给出重建结果的不确定度。  相似文献   

6.
Markov Chain Monte Carlo (MCMC) methods sample from unnormalized probability distributions and offer guarantees of exact sampling. However, in the continuous case, unfavorable geometry of the target distribution can greatly limit the efficiency of MCMC methods. Augmenting samplers with neural networks can potentially improve their efficiency. Previous neural network-based samplers were trained with objectives that either did not explicitly encourage exploration, or contained a term that encouraged exploration but only for well structured distributions. Here we propose to maximize proposal entropy for adapting the proposal to distributions of any shape. To optimize proposal entropy directly, we devised a neural network MCMC sampler that has a flexible and tractable proposal distribution. Specifically, our network architecture utilizes the gradient of the target distribution for generating proposals. Our model achieved significantly higher efficiency than previous neural network MCMC techniques in a variety of sampling tasks, sometimes by more than an order magnitude. Further, the sampler was demonstrated through the training of a convergent energy-based model of natural images. The adaptive sampler achieved unbiased sampling with significantly higher proposal entropy than a Langevin dynamics sample. The trained sampler also achieved better sample quality.  相似文献   

7.
The point and interval estimations for the unknown parameters of an exponentiated half-logistic distribution based on adaptive type II progressive censoring are obtained in this article. At the beginning, the maximum likelihood estimators are derived. Afterward, the observed and expected Fisher’s information matrix are obtained to construct the asymptotic confidence intervals. Meanwhile, the percentile bootstrap method and the bootstrap-t method are put forward for the establishment of confidence intervals. With respect to Bayesian estimation, the Lindley method is used under three different loss functions. The importance sampling method is also applied to calculate Bayesian estimates and construct corresponding highest posterior density (HPD) credible intervals. Finally, numerous simulation studies are conducted on the basis of Markov Chain Monte Carlo (MCMC) samples to contrast the performance of the estimations, and an authentic data set is analyzed for exemplifying intention.  相似文献   

8.
In the paper, we begin with introducing a novel scale mixture of normal distribution such that its leptokurticity and fat-tailedness are only local, with this “locality” being separately controlled by two censoring parameters. This new, locally leptokurtic and fat-tailed (LLFT) distribution makes a viable alternative for other, globally leptokurtic, fat-tailed and symmetric distributions, typically entertained in financial volatility modelling. Then, we incorporate the LLFT distribution into a basic stochastic volatility (SV) model to yield a flexible alternative for common heavy-tailed SV models. For the resulting LLFT-SV model, we develop a Bayesian statistical framework and effective MCMC methods to enable posterior sampling of the parameters and latent variables. Empirical results indicate the validity of the LLFT-SV specification for modelling both “non-standard” financial time series with repeating zero returns, as well as more “typical” data on the S&P 500 and DAX indices. For the former, the LLFT-SV model is also shown to markedly outperform a common, globally heavy-tailed, t-SV alternative in terms of density forecasting. Applications of the proposed distribution in more advanced SV models seem to be easily attainable.  相似文献   

9.
包景东 《计算物理》1992,9(3):257-262
本文基于四维相空间拓展,提出了求解简谐有色噪声驱动下含记忆阻尼的非马尔科夫Langevin方程的轨道抽样——蒙特卡罗方法。计算了晶体缺陷翻越势垒的热激活过程的逃逸速率。为得到平稳的无规力关联函数,导出了以往忽视的有色噪声的初始分布。数值模拟结果较好地显示出理论所预期的随机共振现象。  相似文献   

10.
Extracting latent nonlinear dynamics from observed time-series data is important for understanding a dynamic system against the background of the observed data. A state space model is a probabilistic graphical model for time-series data, which describes the probabilistic dependence between latent variables at subsequent times and between latent variables and observations. Since, in many situations, the values of the parameters in the state space model are unknown, estimating the parameters from observations is an important task. The particle marginal Metropolis–Hastings (PMMH) method is a method for estimating the marginal posterior distribution of parameters obtained by marginalization over the distribution of latent variables in the state space model. Although, in principle, we can estimate the marginal posterior distribution of parameters by iterating this method infinitely, the estimated result depends on the initial values for a finite number of times in practice. In this paper, we propose a replica exchange particle marginal Metropolis–Hastings (REPMMH) method as a method to improve this problem by combining the PMMH method with the replica exchange method. By using the proposed method, we simultaneously realize a global search at a high temperature and a local fine search at a low temperature. We evaluate the proposed method using simulated data obtained from the Izhikevich neuron model and Lévy-driven stochastic volatility model, and we show that the proposed REPMMH method improves the problem of the initial value dependence in the PMMH method, and realizes efficient sampling of parameters in the state space models compared with existing methods.  相似文献   

11.
We conduct a case study in which we empirically illustrate the performance of different classes of Bayesian inference methods to estimate stochastic volatility models. In particular, we consider how different particle filtering methods affect the variance of the estimated likelihood. We review and compare particle Markov Chain Monte Carlo (MCMC), RMHMC, fixed-form variational Bayes, and integrated nested Laplace approximation to estimate the posterior distribution of the parameters. Additionally, we conduct the review from the point of view of whether these methods are (1) easily adaptable to different model specifications; (2) adaptable to higher dimensions of the model in a straightforward way; (3) feasible in the multivariate case. We show that when using the stochastic volatility model for methods comparison, various data-generating processes have to be considered to make a fair assessment of the methods. Finally, we present a challenging specification of the multivariate stochastic volatility model, which is rarely used to illustrate the methods but constitutes an important practical application.  相似文献   

12.
Complex Langevin dynamics can solve the sign problem appearing in numerical simulations of theories with a complex action. In order to justify the procedure, it is important to understand the properties of the real and positive distribution, which is effectively sampled during the stochastic process. In the context of a simple model, we study this distribution by solving the Fokker–Planck equation as well as by brute force and relate the results to the recently derived criteria for correctness. We demonstrate analytically that it is possible that the distribution has support in a strip in the complexified configuration space only, in which case correct results are expected.  相似文献   

13.
We wish to shed some light on the problem of thermodynamic irreversibility in the relativistic framework. Therefore, we propose a relativistic stochastic process based on a generalization of the usual Ornstein–Uhlenbeck process: we introduce a relativistic version of the Langevin equation with a damping term which has the correct Galilean limit. We then deduce relativistic Kramers and Fokker–Planck equations and a fluctuation-dissipation theorem is derived from them. Finally, numerical simulations are used to check the equilibrium distribution in momentum space and to investigate diffusion in physical space.  相似文献   

14.
Efficiently accessing the information contained in non-linear and high dimensional probability distributions remains a core challenge in modern statistics. Traditionally, estimators that go beyond point estimates are either categorized as Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques. While MCMC methods that utilize the geometric properties of continuous probability distributions to increase their efficiency have been proposed, VI methods rarely use the geometry. This work aims to fill this gap and proposes geometric Variational Inference (geoVI), a method based on Riemannian geometry and the Fisher information metric. It is used to construct a coordinate transformation that relates the Riemannian manifold associated with the metric to Euclidean space. The distribution, expressed in the coordinate system induced by the transformation, takes a particularly simple form that allows for an accurate variational approximation by a normal distribution. Furthermore, the algorithmic structure allows for an efficient implementation of geoVI which is demonstrated on multiple examples, ranging from low-dimensional illustrative ones to non-linear, hierarchical Bayesian inverse problems in thousands of dimensions.  相似文献   

15.
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen–Loève expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data.  相似文献   

16.
Most of the atmospheric and oceanic data assimilation (DA) schemes rely on the Best Linear Unbiased Estimator (BLUE), which is sub-optimal if errors of assimilated data are non-Gaussian, thus calling for a full Bayesian data assimilation. This paper contributes to the study of the non-Gaussianity of errors in the observational space. Possible sources of non-Gaussianity range from the inherent statistical skewness and positiveness of some physical observables (e.g. moisture, chemical species), the nonlinearity, both of the data assimilation models and of the observation operators among others. Deviations from Gaussianity can be justified from a priori hypotheses or inferred from statistical diagnostics of innovations (observation minus background), leading to consistency relationships between the error statistics. From samples of observations and backgrounds as well as their specified error variances, we evaluate some measures of the innovation non-Gaussianity, such as the skewness, kurtosis and negentropy. Under the assumption of additive errors and by relating statistical moments from both data errors and innovations, we identify potential sources of the innovation non-Gaussianity. These sources range from: (1) univariate error non-Gaussianity, (2), nonlinear correlations between errors, (3) spatio-temporal variability of error variances (heteroscedasticity) and (4) multiplicative noise. Observational and background errors are often assumed independent. This leads to variance-dependent bounds for the skewness and the kurtosis of errors. From innovation statistics, we assess the potential DA impact of some scenarios of non-Gaussian errors. This impact is measured through the mean square difference between the BLUE and the Minimum Variance Unbiased Estimator (MVUE), obtained with univariate observations and background estimates. In order to accomplish this, we compute maximum entropy probability density functions (pdfs) of the errors, constrained by the first four order moments. These pdfs are then used to compute the Bayesian posterior pdf and the MVUE. The referred impact is studied for a large range of statistical moments, being higher for skewed innovations and growing in average with the skewness of data errors, specially if the skewnesses have the same sign. An application has been performed to the quality-accepted ECMWF innovations of brightness temperatures of a set of High Resolution Infrared Sounder (HIRS) channels. In this context, the MVUE has led in some extreme cases to a potential reduction of 20%-60% of the posterior error variance as compared to the BLUE, specially for extreme values of the innovations.  相似文献   

17.
Variational inference is an optimization-based method for approximating the posterior distribution of the parameters in Bayesian probabilistic models. A key challenge of variational inference is to approximate the posterior with a distribution that is computationally tractable yet sufficiently expressive. We propose a novel method for generating samples from a highly flexible variational approximation. The method starts with a coarse initial approximation and generates samples by refining it in selected, local regions. This allows the samples to capture dependencies and multi-modality in the posterior, even when these are absent from the initial approximation. We demonstrate theoretically that our method always improves the quality of the approximation (as measured by the evidence lower bound). In experiments, our method consistently outperforms recent variational inference methods in terms of log-likelihood and ELBO across three example tasks: the Eight-Schools example (an inference task in a hierarchical model), training a ResNet-20 (Bayesian inference in a large neural network), and the Mushroom task (posterior sampling in a contextual bandit problem).  相似文献   

18.
基于量子粒子群算法的自适应随机共振方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李一博  张博林  刘自鑫  张震宇 《物理学报》2014,63(16):160504-160504
为提升随机共振理论在微弱信号检测领域中的实用性,以随机共振系统参数为研究对象,提出了基于量子粒子群算法的自适应随机共振方法.首先将自适应随机共振问题转化为多参数并行寻优问题,然后分别在Langevin系统和Duffing振子系统下进行仿真实验.在Langevin系统中,将量子粒子群算法和描点法进行了寻优结果对比;在Duffing振子系统中,Duffing振子系统的寻优结果则直接与Langevin系统的寻优结果进行了对比.实验结果表明:在寻优结果和寻优效率上,基于量子粒子群算法的自适应随机共振方法要明显高于描点法;在相同条件下,Duffing振子系统的寻优结果要优于Langevin系统的寻优结果;在两种系统下,输入信号信噪比越低就越能体现出量子粒子群算法的优越性.最后还对随机共振系统参数的寻优结果进行了规律性总结.  相似文献   

19.
In this Letter we propose a new formalism to map history-dependent metadynamics in a Markovian process. We apply this formalism to model Langevin dynamics and determine the equilibrium distribution of a collection of simulations. We demonstrate that the reconstructed free energy is an unbiased estimate of the underlying free energy and analytically derive an expression for the error. The present results can be applied to other history-dependent stochastic processes, such as Wang-Landau sampling.  相似文献   

20.
The Langevin equation–perhaps the most elemental stochastic differential equation in the physical sciences–describes the dynamics of a random motion driven simultaneously by a deterministic potential field and by a stochastic white noise. The Langevin equation is, in effect, a mechanism that maps the stochastic white-noise input to a stochastic output: a stationary steady state distribution in the case of potential wells, and a transient extremum distribution in the case of potential gradients. In this paper we explore the degree of randomness of the Langevin equation’s stochastic output, and classify it à la Mandelbrot into five states of randomness ranging from “infra-mild” to “ultra-wild”. We establish closed-form and highly implementable analytic results that determine the randomness of the Langevin equation’s stochastic output–based on the shape of the Langevin equation’s potential field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号