首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A new technique, namely dynamic headspace liquid-phase microextraction, has been developed for the extraction of 1,4-dioxane in cosmetic and hygiene samples followed by gas chromatography–flame ionization detection. In this method, the sample is mixed with acetone as a diluent solvent. Then, a few microliters of n-octanol are added into a home-made extraction vessel placed in the headspace of the sample. By heating, the target analyte is transferred to the headspace of the sample and then extracted into n-octanol. Under the optimized conditions, the method showed a good linearity in the range of 3.24–1000 μg kg−1 with a coefficient of determination 0.998. Figures of merit such as enrichment factor of 375, extraction recovery of 94 %, limits of detection and quantification 0.97 and 3.24 μg kg−1, respectively, and relative standard deviation 4.7 % (n = 6, C = 30 μg kg−1) of the proposed method were satisfactory for determination of the target analyte. Finally, the method was successfully applied in determination of 1,4-dioxane in various cosmetic and hygiene samples including shampoo, toothpaste, lotion, washing liquid, and dishwashing liquid.

  相似文献   

2.
Summary This paper reports the investigation and optimization of the thin layer chromatography/matrix-assisted laser desorption/ionization (TLC-MALDI) coupling protocol. The fundamental coupling parameters which influence sensitivity and lateral analyte spreading are extraction solvent selection, extraction time, and pressure. Selection of the solvent is dependent upon its extraction efficiency, which has been correlated with extraction solventR f value. Maximum extraction efficiency occurs after two minutes for the analyte/solvent system studied. High extraction efficiency solvents cause significant lateral spreading of analyte; up to a three-fold increase in initial analyte spot size. Analyte recovery was found to be limited by the silica gel inter-partice porosity and the solvent extraction efficiency. For maintaining chromatographic resolution and maximizing signal intensity, extraction solvents withR f values between 0.4 to 0.6 are optimal. The upper analyte recovery limit, using extraction solvents within thisR f range, is estimated at 22%. Dedicated to Professor Werner Haerdi on the occasion of his 70th birthday.  相似文献   

3.
The use of the recovery term has presented some confusion in Analytical Chemistry. Recent IUPAC recommendations propose to distinguish between two terms: recovery or recovery factor, ℜ, and apparent recovery, ℜ*. Apparent recovery includes recovery factor and a new recovery term proposed in this paper, named calibration recovery, ℜC, which depends of the type of systematic error due to the matrix effect (constant and/or proportional) and is related to the applied calibration methodology. This paper highlights the dependence of the calibration recovery on the sample analyte concentration and, for extension, of the apparent recovery, defines the recovery profile, and makes evident the need to determine a “fit for purpose” analyte concentration interval to comply with a regulated recovery requirements. An approach to estimate the calibration recovery and its associated uncertainty in relation to the above-mentioned dependence is presented. The usefulness of the proposed methodology has been shown in the quantification of a pesticide by GC-ECD for assessing dermal exposure.  相似文献   

4.
A hyperbranched polyester was fractionated by precipitation to produce 10 fractions with molecular weights between 20 × 103 and 520 × 103 g mol?1. Each of these fractions was examined by size exclusion chromatography, dilute‐solution viscometry, intensity, and quasi‐elastic light scattering in chloroform solution at 298 K. High‐resolution solution‐state 13C NMR was used to determine the degree of branching; for all fractions this factor was 0.5 ± 0.1. Viscometric contraction factors, g′, decreased with increasing molecular weight, and the relation of this parameter to the configurational contraction factor, g, calculated from a theoretical relation suggested a very strong dependence on the universal viscosity constant, Φ, on the contraction factor. A modified Stockmayer–Fixman plot was used to determine the value of (〈r2o/Mw)1/2, which was much larger than the value for the analogous linear polymer. The scaling relations of the various characteristic radii (Rg, Rh, RT, and Rη) with molecular weight all had exponents less than 0.5 that agreed with the theoretical predictions for hyperbranched polymers. The exponent for Rg was interpreted as fractal dimension and had a value of 2.38 ± 0.25, a value that is of the same order as that anticipated by theory for branched polymers in theta conditions and certainly not approaching the value of 3 that would be associated with the spherical morphology and uniform segment density distribution of dendrimers. Second virial coefficients from light scattering are positive, but the variation of the interpenetration function, ψ, with molecular weight and the friction coefficient, ko, obtained from the concentration dependence of the diffusion coefficient suggests that chloroform is not a particularly good solvent for the hyperbranched polyester and that the molecules are soft and penetrable with little spherical nature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1339–1351, 2003  相似文献   

5.
A simple, reliable, and highly sensitive method for the simultaneous determination of aflatoxin B1, B2, G1, G2 in Fructus Bruceae was developed using high‐performance liquid chromatography coupled to online postcolumn photochemical derivatization and fluorescence detection. Aflatoxins were first extracted by a methanol/water mixture and then cleaned up with an AflaTest? immunoaffinity column. Different clean‐up and derivatization methods were compared and optimized. The established method was extensively validated to show satisfactory performance of linearity (R2 ≥ 0.9997), recovery (74.3–100.8%), and precision (RSDs ≤ 2.8%) for the investigated aflatoxins. This proposed method was also applied to 11 F. Bruceae samples and the results showed that 10 out of 11 were contaminated with aflatoxins ranging from 0.26 to 27.52 μg/kg and the occurrence of aflatoxin B1, the most toxic one, was as high as 91% in all the samples, highlighting the severe contamination and the necessity to set legal limits for aflatoxins in F. Bruceae.  相似文献   

6.
A new analytical method is proposed for simultaneous determination, by liquid chromatography, of the three main urinary thiols–cysteine, cysteinylglycine, and homocysteine. To measure the total amount of these thiols urine is reduced with sodium borohydride, to convert disulfides to thiols which are then derivatized with 2-chloro-1-methylquinolinium tetrafluoroborate. Separation and quantitation of the 2-S-quinolinium thiol derivatives formed were achieved by high-performance liquid chromatography with detection at 355 nm. Validation showed the method enabled reliable simultaneous determination of these aminothiols in urine. The calibration graphs for each analyte, obtained by use of normal urine spiked with increasing amounts of cysteine, cysteinylglycine, and homocysteine, were linear (R 2≥0.997) over the range covering most practical situations. The recovery of the assay was 98–100% and sensitivity was 0.12–0.25 μmol L−1. The method was applied to 91 different samples of normal urine to establish reference values for the aminothiols, normalized on creatinine.  相似文献   

7.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

8.
Robert Piech 《Electroanalysis》2010,22(16):1851-1856
A new adsorptive stripping voltammetric method for the determination of trace scandium(III) based on the adsorption of scandium(III)‐mordant blue 9 complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.09 μg L?1) to 90 nM (4 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 7.9 mm2 the detection limit for a preconcentration time of 90 s is as low as 5 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.2 μg L?1, expressed as RSD is 1.9 % (n=5). The proposed method was successfully applied and validated by studying the certified reference material (CRM 320 – river sediment) and natural samples with simultaneous recovery of Sc(III) from spiked water and sediment samples.  相似文献   

9.
A new simple isocratic chiral RP-LC method has been developed for the separation and quantification of the enantiomer of (R,R)-tadalafil in bulk drugs and dosage forms with an elution time of about 20 min. Chromatographic separation of (R,R)-tadalafil and its enantiomer was achieved on a bonded macro cyclic glycopeptide stationary phase. The method resolves the (R,R)-tadalafil and its enantiomer with a resolution (R s) greater than 2.4 in the developed chiral RP-LC. The mobile phase used for the separation and quantification of (R,R)-tadalafil and its enantiomer involves a simple mixture of reverse phase solvents and the cost of analysis was drastically decreased. The test concentration is 0.4 mg mL−1 in the mobile phase. This method is capable of detecting the enantiomer of (R,R)-tadalafil up to 0.0048 μg wrt test concentration 400 μg mL−1 for a 20 μL injection volume. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. There was no interference of degradants with (R,R)-tadalafil and its enantiomer in the developed method. The developed chiral RP-LC method was validated with respect to linearity, accuracy, precision and robustness. The percentage recovery for the enantiomer of (R,R)-tadalafil in bulk drug samples and in dosage forms ranged from 97.0 to 102.5%. The test solution was found to be stable in the mobile phase for 48 h after preparation.  相似文献   

10.
A pair of pseudoenantiomers, anilide derivatives of N-pivaloylproline were prepared and used as chiral selectors for enantiomer discrimination of amides or esters of N-(3,5-dinitrobenzoyl)amino acids in single-stage electrospray ionization/mass spectrometric experiments. Addition of a chiral analyte to a solution of the two pseudoenantiomeric chiral selectors affords selector–analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector–analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of the measured enantioselectivity and for quantitative enantiomeric composition determinations. Effects of the added cationic ions (H+, Li+, Na+ and K+) and instrument conditions on the selector–analyte ion intensity and the enantioselectivity (αMS) were investigated. The percent ratio of the sum of the selector–analyte ion counts and the total ion counts decreases accordingly with the increase of the desolvation temperature for H+, Na+ and K+. The ratio for Li+ kept almost constant. The best αMS was observed at a desolvation temperature of 200 °C with the added H+. The cone voltage has little effects on the αMS values though the intensities of selector–analyte complexes are decreased at higher cone voltages. The observed MS enantioselectivities are comparable to the HPLC enantioselectivities and the sense of chiral recognition by MS is consistent with what is observed chromatographically. Quantitative enantiomeric composition determinations for five different samples of N-(3,5-dinitrobenzoyl)leucinyl butylamide at four different concentrations were performed. The average % difference between the HPLC and MS enantiomer determinations is 6.8% and 3.7% for the calibration lines constructed at a concentration of the analyte of 125 μM and 12.5 μM, respectively.  相似文献   

11.
A new and sensitive precolumn derivatisation with dabsyl chloride was developed for the analysis of melamine in water samples by high-performance liquid chromatography (HPLC) with visible detection. Derivatisation with dabsyl chloride leads to improving sensitivity and hydrophobicity of melamine. Under optimum conditions of derivatisation and microextraction, the method yielded a linear calibration curve ranging from 10 to 2000 µg L?1 with a determination coefficient (R2) of 0.9952. Limit of detection (LOD) and limit of quantification (LOQ) were 2.0 and 6.0 µg L?1, respectively. The relative standard deviation per cent (RSD%) for intraday and inter-day extraction and determination at 20 and 200 µg L?1 levels of melamine was less than 8.2% (n = 6). Finally, the proposed method was successfully applied for the determination of melamine in different water samples and satisfactory results were obtained (relative recovery ≥91%).  相似文献   

12.
In the present work, the multi-channel features of multisyringe flow injection analysis (MSFIA) were exploited for the first time to implement calibration based on standard addition method (SAM). For this, standard solutions containing different concentrations of target analyte were placed in each syringe of the multisyringe and connected to a flow network where in-line mixing of sample and standard through a merging zone approach was established prior to detection of analyte. Using this strategy, artifacts reported before in SAM using flow injection analysis were avoided as the concentration of the analyte in the resulting mixture was related to the dilution of sample and added standard within the system, and the concentration of all matrix components was kept constant during all measurements. The feasibility of the proposed MSFIA system was assessed through application to potentiometric determination of chloride ion in electroplating bath and milk samples. Results obtained for samples (n = 15) were not statistically different from those provided by titrimetric procedures, with an excellent throughput (20–31 samples h− 1), comprising four-level addition of chloride ion.  相似文献   

13.
We propose a mathematical model from an analytical application viewpoint inspired in the limit dilution method. The theoretical development of the model and its results are given. The model shows that there is a linear relation between the inverse of fluorescence intensity and the inverse of the dilution factor; each analytic system (sample, diluent and analyte) is characterised by a general linear function which is easily obtained. The analytical applications arising from this linearity are of great importance in X-ray fluorescence analysis. The following immediate applications are proposed: direct procurement of the total correction factor Y/H, rapid calculation of the fluorescence intensity of the analyte in a sample (Iis) and direct calculation of the corrected fluorescence intensity (IisF). The suggested model makes it possible to deduce a linear function between the fluorescence intensity of the analyte and the analyte concentration in successive dilutions of a standard; this straight line behaves as a calibration curve with direct application in X-ray fluorescence analysis. The proposed model may be applied to complex samples of geological origin, with elimination of the matrix effect. The results obtained in the determination of Ca, K, Fe and Ti in a standard soil show complete agreement with the certified reference values with a relative error about 0.5%, even using a standard shale with very different chemical composition as reference sample.  相似文献   

14.
A novel kinetic method for determination of uric acid in human serum by means of an uncatalyzed BZ system consisting of potassium bromate and p‐hydroxybenzaldehyde (p‐HBA) in sulfuric acid medium was proposed, in which the analyte perturbation to the system was recorded close to the bifurcation point. The potential change was directly proportional to the logarithm of concentration of uric acid in the range of 3.73×10?8–7.48×10?4 mol·L?1 (r=0.9983) with a detection limit of 7.45×10?9 mol·L?1 and a recovery from 98.9% to 101.1%. A comparison between the proposed technique and other methods indicated that results obtained were in agreement with those in clinical detection. In addition, the possible mechanism of action of uric acid on the uncatalyzed BZ reaction was also discussed briefly.  相似文献   

15.
A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform–NIR–FIR–Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio (D) values of approximately 103, even under high acidities (1–4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of 10 min was sufficient to achieve complete metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g–1 for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm–3 for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.  相似文献   

16.
A new method for the preconcentration and determination of indium was developed using fiber optic linear array detection spectroscopy (FO-LADS) combined with liquid-liquid microextraction (DLLME). DLLME was performed with rapid injection of a mixture containing ethanol (disperser solvent) and chloroform (extraction solvent) into water sample containing indium after complex formation using 1-(2-pyridylazo)-2-naphthol (PAN) reagent that resulted in the formation of a cloudy solution. After centrifuging, fine droplets of chloroform, which were dispersed among the solution and extracted In-PAN complex, sedimented at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by FO-LADS. The optimized method exhibited a good linearity (R 2 = 0.993) over the studied range (2–300 μg/L), illustrating a satisfactory precision level with standard deviation (RSD, n = 5) lower than 4%. The detection limit was 0.3 μg/L, and the enhancement factor of 160 was obtained. The proposed method was compared with other methods and successfully applied to the analysis of several real and standard samples with satisfactory results.  相似文献   

17.
A pair of molecular tweezers (syn‐ 4 ) that consists of quinoline and pyrazine units fused to a bicyclic framework is presented. The tweezers were synthesised both as a racemic mixture (rac‐ 4 ) and an enantiomerically pure form ((R,R,R,R)‐ 4 ) starting from either racemic or enantiomerically pure bicyclo[3.3.1]nonane‐2,6‐dione ( 3 ). Homochiral dimers were observed in the solid state for rac‐ 4 . The self‐association of both rac‐ 4 and (R,R,R,R)‐ 4 was studied in solution. A weak self‐association constant in CDCl3 was estimated by 1H NMR spectroscopic dilution titration experiments in both cases, following several proton resonances. For this purpose, a general normalisation model for the accurate determination of association constants from multiple datasets was developed. In contrast to the solid state, no diastereomeric discrimination was observed for rac‐ 4 in solution.  相似文献   

18.
A mathematical model based on the dilution–addition method (DAM) for multi-elemental analysis using an X-ray fluorescence technique is proposed. The conditions for sample preparation do not require both the unknown and standard samples to be similar in composition and mineralogy, and the unknown sample is replaced quantitatively by the standard sample, hence the denomination substitution–dilution method (SDM). This method makes it possible to correct the matrix effect in multi-elemental quantitative analysis by X-ray fluorescence for each analyte. The proposed model presents hyperbolic behaviour of the experimental data when the X-ray fluorescence intensities are represented versus the substitution factor (h) for each analyte. After calculating the A/B parameter relations, which depend on the X-ray fluorescence intensity of each analyte (Iins) and the substitution factor (h) and determining the analyte concentration in the multi-element standard sample (Cip), it is possible to calculate the analyte concentration in the multi-element unknown using an algorithm suggested for this purpose. This work studies the substitution–dilution phase proposed in the method, and the factors arising from incorporation of the standard and diluent are established according to the nature of the samples and the modifications. These factors make it possible to establish the experimental interval of analyte concentration, generally narrow, which corresponds to a section of the hyperbolic function which is so short that it can be accepted as linear. This linear model can be accepted for a wide variety of samples with a diluent/sample ratio greater than 10. The proposed linear method provides satisfactory results which are comparable to those calculated by applying the hyperbolic method. The proposed method (SDM) has been applied to two different types of matrices, a binary alloy (without diluent, using the hyperbolic model) and a geological sample (with diluent, using both hyperbolic and linear models). In all cases the results were satisfactory.  相似文献   

19.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

20.
A novel non-chromatographic method for the pre-concentration and determination of trace methyl mercury in water samples has been proposed. This method included two main steps: (1) The methyl mercury in sample solution was adsorbed on PDMS of the Fe/SiO2/PDMS bed enrichment column; (2) the analyte was thermally desorbed from the enrichment column and pyrolysed to Hg0 in an iron particle bed pyrolysis column by using electromagnetic induction heating technique, and then detected by an on-line coupled atomic fluorescence detector. Several factors affecting the enrichment column preparation and concentration procedure have been investigated and optimised. Under optimal condition, the detection limit (3σ) was 0.2 ng L–1, along with relative standard deviations of 2.4% (10 ng L–1, N = 11) for the repeatability study. The enrichment factor obtained was 108. The two standard reference materials (GBW08675, GBW10029) were analysed to validate the present method. This method was successfully applied to the determination of ng L–1 methyl mercury in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号