首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring-closing alkene metatheses of trans,trans-(C6F5)(Ph2P-Z-CH=CH2)2Pt(C[triple bond]C)4Pt(Ph2P-Z-CH=CH2)2(C6F5) (Z = (CH2)9, (CH2)4O(CH2)2), followed by hydrogenation, give the title compounds; the former exhibits an exceptionally twisted conformation, and the latter establishes that functional groups can be incorporated into the flexible sp3 chain.  相似文献   

2.
Treatment of OsX2(PPh3)3 (X = Cl, Br) with HCCCH(OH)CCH in THF produces OsX2(CH=C(PPh3)CH(OH)CCH)(PPh3)2, which reacts with PPh3 to give osmabenzenes [Os(CHC(PPh3)CHC(PPh3)CH)X2(PPh3)2]+.  相似文献   

3.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

4.
5.
6.
7.
Reactions of Uranium Pentabromide. Crystal Structures of PPh4[UBr6], PPh4[UBr6] · 2CCl4, (PPh4)2[UBr6] · 4CH3CN, and (PPh4)2[UO2Br4] · 2CH2Cl2 PPh4[UBr6] and PPh4[UBr6] · 2CCl4 were obtained from UBr5 · CH3CN and tetraphenylphosphonium bromide in dichloromethane, the latter being precipitated by CCl4. Their crystal structures were determined by X-ray diffraction. PPh4[UBr6]: 2101 observed reflexions, R = 0.090, space group C2/c, Z = 4, a = 2315.5, b = 695.0, c = 1805.2 pm, β = 96.38°. PPh4[UBr6] · 2CCl4: 2973 reflexions, R = 0.074, space group P21/c, Z = 4, a = 1111.5, b = 2114.2, c = 1718.7 pm, β = 95.42°. Hydrogen sulfide reduces uranium pentabromide to uranium tetrabromide. Upon evaporation, bromide is evolved from solutions of UBr5 with 1 or more then 3 mol equivalents of acetonitrile in dichlormethane yielding UBr4 · CH3CN and UBr4 · 3CH3CN, respectively. These react with PPh4Br in acetonitrile affording (PPh4)2[UBr6] · 4CH3CN, the crystal structure of which was determined: 2663 reflexions, R = 0.050, space group P21/c, Z = 2, a = 981.8, b = 2010.1, c = 1549.3 pm, β = 98.79°. By reduction of uranium pentabromide with tetraethylammonium hydrogen sulfide in dichloromethane (NEt4)2[U2Br10] was obtained; (PPh4)2[U2Br10] formed from UBr4 and PPh4Br in CH2Cl2. Both compounds are extremely sensitive towards moisture and oxygen. The crystal structure of the oxydation product of the latter compound, (PPh4)2[U02Br4]· 2 CH2Cl2, was determined: 2163 reflexions, R = 0.083, space group C2/c, Z = 4, a = 2006.3, b = 1320.6, c = 2042,5 pm, β = 98.78°. Mean values for the UBr bond lengths in the octahedral anions are 266.2 pm for UBr6-, 276.7 pm for UBr62? and 282.5 pm for UO2Br42?  相似文献   

8.
We studied the reactivity of an osmium vinyl complex containing a coordinated hydroxyl group OsCl2(PPh3)2[CH=C(PPh3)CHPh(OH)] (1) toward bidentate ligand 1,4-bis(diphenylphosphino)butane (DPPB),acid ligand (CO),base (Cs2CO3) and heat.Two osmium vinyl complexes OsCl2(dppb)[CH=C(PPh3)CHPh(OH)](2) and OsCl2(CO)2(PPh3)[CH=C(PPh 3)CHPh(OH)] (3),as well as two relatively rare phosphonium-containing osmafuran complexes Os(2-OCOO)(PPh3)2[CHC(PPh3)CPhO](4) and OsCl2 (PPh3)2[CHC(PPh3)CPhO](5),were obtained in high yields from these reactions.All products were characterized by NMR spectroscopy,elemental analysis,and their structures were further confirmed by single crystal X-ray diffraction.  相似文献   

9.
10.
The triligate trimetallic complexes, [{M(CO)5}3(Pf-Pf-Pf)] and tetraligate tetrametallic complexes, [{M(CO)5}4(P-Pf3)] (M = Cr and Mo), were prepared from [M(CO) 6] and the corresponding ligands in MeCN/CH2Cl2 promoted by Me3NO at 0 °C. Crystals of trimer lb are monoclinic, space group P 21/n, with a = 13.407(3), b = 15.002(5), c = 26.52(1) Å, β = 90.65(2)°, Z = 4, and R = 0.060 for 2760 observed reflections. Crystals of tetramer 2a are monoclinic, space group P 21/c, with a – 14.183(8), b = 29.880(4), c = 16.103(2) Å, β = 94.98(3)°, Z = 4, and R = 0.039 for 5014 observed reflections. Crystals of 2b are monoclinic, space group C 2/c, with a = 42.120(8), b = 13.679(1), c = 23.486(2) Å, β = 92.14(1)°, Z = 8, and R = 0.032 for 6897 observed reflections. Each phosphorus atom of the ligands is coordinated to the M(CO)5 moiety in each title compounds. The geometry of the four metals is a distorted tetrahedron for the tetramers.  相似文献   

11.
An investigation into the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to electrospray ionisation mass spectrometry (ESI-MS) for the differentiation of co-populated protein conformers has been conducted on the amyloidogenic protein beta(2)-microglobulin (beta(2)m). Accumulation of beta(2)m in vivo can result in the deposition of insoluble fibrils whose formation is thought to originate from partially folded protein conformers; hence, the folding properties of beta(2)m are of significant interest. We have analysed beta(2)m using ESI-FAIMS-MS under a range of pH conditions and have studied the effect of the ion mobility spectrometry parameters on the behaviour of the various protein conformers. The data show that different protein conformers can be detected and analysed by ESI-FAIMS-MS, the results being consistent with observations of pH denaturation obtained using complementary biophysical techniques. A variant of beta(2)m with different folding characteristics has been analysed for comparison, and the distinctions observed in the data sets for the two proteins are consistent with their folding behaviour. ESI-FAIMS-MS offers significant opportunities for the study of the conformational properties of proteins and thus may present valuable insights into the roles that different conformers play in diseases related to protein folding.  相似文献   

12.
13.
14.
Adducts of Oxotetrachloro-niobate (V). Formation, Vibrational Spectra, and Crystal Structures of PPh4[NbOCl4(OH2)] and (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2 Crystalline (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2 was obtained by hydrolysis of PPh4[NbSCl4] in the presence of POCl3 in CH2Cl2. Experiments to obtain the same compound from PPh4Cl, POCl3, NbCl5, and H2O yielded PPh4[NbOCl4(OH2)]. I.R. spectra of both compounds are discussed. The crystal structure determinations with X-ray diffraction data in both cases show quadratic-pyramidal NbOCl4? ions to which a molecule of either H2O or a PO2Cl2? ion is attached in trans-position to the O atom. PPh4[NbOCl4(OH2)]: tetragonal, space group P4/n, a = 1 308, c = 734 pm, Z = 2, packing as in the AsPh4[RuNCl4] type; refinement down to R = 0.046 for 681 reflexions. (PPh4)2[NbOCl4(O2PCl2)] · 2 CH2Cl2: triclinic, space group P1 , a = 1172, b = 1187, c = 2105 pm, α = 88.40, β = 83.20, γ = 71.28°, Z = 2, packing similar as in (AsPh4)2[NbOCl5] · 2 CH2Cl2; refinement to R = 0.059 for 2 502 reflexions.  相似文献   

15.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

16.
Gas-phase fragmentation reactions of [Pd(PPh3)2(OCOR)]+ (R = H, CH3, CD3, C2H5, n-C3H7, n-C6H13 and C6H5) were studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS). In sustained off-resonance irradiation collision-activated dissociation (SORI-CAD) experiments, the complexes all dissociated to yield the same product ion at m/z 629.1. We propose that the fragmentation pathway occurs through the elimination of RCOOH and a palladium(IV) hydride intermediate. Semi-empirical (PM3) calculations shed light on the mechanism for the fragmentation reactions of these compounds. The results of deuterium-labeling experiments indicate that the protons of RCOOH lost from [Pd(PPh3)2(OCR)]+ originate from the phenyl in the triphenylphosphine ligand. [Pd(PPh3)2(OCOH)]+ undergoes two competitive pathways in SORI-CAD experiments, one of which is similar to that of [Pd(PPh3)2(OCOR)]+ (R = CH3, CD3, C2H5, n-C3H7, n-C6H13 and C6H5), and the other involves decarboxylation. The present study demonstrates that MS could play an important role in studying the gas-phase chemistry of palladium hydrides.  相似文献   

17.
Poly(vinyl acetates) with either isopropylol or (1-hydroxyethyl)-2-oxyisopropanyl end groups were analysed by tandem mass spectrometry using a quadrupole-time-of-flight (Q-TOF) instrument. Random scission along the polymer backbone was not observed. Instead the initial scissions were derived from the cleavage of end-group species. The resultant macrocations were subject to further elimination reactions that eventually produced polyene macrocations. A smaller fraction of the initial macrocations also reacted by loss of ketene and this reaction produced macrocations containing vinyl alcohol units.  相似文献   

18.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

19.
20.
New approaches to electrospray ionization mass spectrometry (ESI-MS)-with exact compositional assignments-of small (Au25) nanoparticles with uniform and mixed protecting organothiolate monolayers are described. The results expand the scope of analysis and reveal a rich chemistry of ionization behavior. ESI-MS of solutions of phenylethanethiolate monolayer-protected gold clusters (MPCs), Au25(SC2Ph)18, containing alkali metal acetate salts (MOAc) produce spectra in which, for Na+, K+, Rb+, and Cs+ acetates, the dominant species are MAu25(SC2Ph)182+ and M2Au25(SC2Ph)182+. Li+ acetates caused ligand loss. This method was extended to the analysis of Au25 MPCs with mixed monolayers, where thiophenolate (-SPh), hexanethiolate (-SC6), or biotinylated (-S-PEG-biotin) ligands had been introduced by ligand exchange. In negative-mode ESI-MS, no added reagents were needed in order to observe Au25(SC2Ph)18- and to analyze mixed monolayer Au25 MPCs prepared by ligand exchange with 4-mercaptobenzoic acid, HSPhCOOH, which gave spectra through deprotonation of the carboxylic acids. Adducts of tetraoctylammonium (Oct4N+) with -SPhCOO- sites were also observed. Mass spectrometry is the only method that has demonstrated capacity for measuring the exact distribution of ligand-exchange products. The possible origins of the different Au25 core charges (1-, 0, 1+, 2+) observed during electrospray ionization are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号