首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors’ previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P = NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given. Supported by the National Natural Science Foundation of China, PCSIRT and the “973” Program.  相似文献   

2.
A k‐tree is a chordal graph with no (k + 2)‐clique. An ?‐tree‐partition of a graph G is a vertex partition of G into ‘bags,’ such that contracting each bag to a single vertex gives an ?‐tree (after deleting loops and replacing parallel edges by a single edge). We prove that for all k ≥ ? ≥ 0, every k‐tree has an ?‐tree‐partition in which each bag induces a connected ‐tree. An analogous result is proved for oriented k‐trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 167–172, 2006  相似文献   

3.
4.
We show that any complete -partite graph on vertices, with , whose edges are two-coloured, can be covered with two vertex-disjoint monochromatic paths of distinct colours, given that the largest partition class of contains at most vertices. This extends known results for complete and complete bipartite graphs. Secondly, we show that in the same situation, all but vertices of the graph can be covered with two vertex-disjoint monochromatic cycles of distinct colours, if colourings close to a split colouring are excluded. From this we derive that the whole graph, if large enough, may be covered with 14 vertex-disjoint monochromatic cycles.  相似文献   

5.
In a landmark paper, Erd?s et al. (1991) [3] proved that if G is a complete graph whose edges are colored with r colors then the vertex set of G can be partitioned into at most cr2logr monochromatic, vertex disjoint cycles for some constant c. Sárközy extended this result to non-complete graphs, and Sárközy and Selkow extended it to k-regular subgraphs. Generalizing these two results, we show that if G is a graph with independence number α(G)=α whose edges are colored with r colors then the vertex set of G can be partitioned into at most (αr)c(αrlog(αr)+k) vertex disjoint connected monochromatick-regular subgraphs of G for some constant c.  相似文献   

6.
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian. J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen, Germany.  相似文献   

7.
We show some consequences of results of Gallai concerning edge colorings of complete graphs that contain no tricolored triangles. We prove two conjectures of Bialostocki and Voxman about the existence of special monochromatic spanning trees in such colorings. We also determine the size of largest monochromatic stars guaranteed to occur. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 211–216, 2004  相似文献   

8.
A complete partition of a graph G is a partition of its vertex set in which any two distinct classes are connected by an edge. Let cp(G) denote the maximum number of classes in a complete partition of G. This measure was defined in 1969 by Gupta [19], and is known to be NP-hard to compute for several classes of graphs. We obtain essentially tight lower and upper bounds on the approximability of this problem. We show that there is a randomized polynomial-time algorithm that given a graph G with n vertices, produces a complete partition of size Ω(cp(G)/√lgn). This algorithm can be derandomized. We show that the upper bound is essentially tight: there is a constant C > 1, such that if there is a randomized polynomial-time algorithm that for all large n, when given a graph G with n vertices produces a complete partition into at least C·cp(G)/√lgn classes, then NP ⊆ RTime(n O(lg lg n)). The problem of finding a complete partition of a graph is thus the first natural problem whose approximation threshold has been determined to be of the form Θ((lgn) c ) for some constant c strictly between 0 and 1. The work reported here is a merger of the results reported in [30] and [21].  相似文献   

9.
We give the first polynomial-time algorithm that computes the bandwidth of bipartite permutation graphs. Bandwidth is an NP-complete graph layout problem that is notorious for its difficulty even on small graph classes. For example, it remains NP-complete on caterpillars of hair length at most 3, a very restricted subclass of trees. Much attention has been given to designing approximation algorithms for computing the bandwidth, as it is NP-hard to approximate the bandwidth of general graphs with a constant factor guarantee. The problem is considered important even for approximation on restricted classes, with several distinguished results in this direction. Prior to our work, polynomial-time algorithms for exact computation of bandwidth were known only for caterpillars of hair length at most 2, chain graphs, cographs, and most interestingly, interval graphs.  相似文献   

10.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

11.
Brualdi and Shanny [R.A. Brualdi, R.F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981) 307-314], Clark [L. Clark, On hamitonian line graphs, J. Graph Theory 8 (1984) 303-307] and Veldman [H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229-239] gave minimum degree conditions of a line graph guaranteeing the line graph to be hamiltonian. In this paper, we investigate the similar conditions guaranteeing a line graph to be traceable. In particular, we show the following result: let G be a simple graph of order n and L(G) its line graph. If n is sufficiently large and, either ; or and G is almost bridgeless, then L(G) is traceable. As a byproduct, we also show that every 2-edge-connected triangle-free simple graph with order at most 9 has a spanning trail. These results are all best possible.  相似文献   

12.
The complexity status of Pendants-median spanning tree problem is an open problem. Using the complexity of the X3C problem, the paper proves that Pendants-median spanning tree problem is NP-complete. Global-median spanning tree problem is a related problem. Using the complexity of 3SAT, the paper proves that this problem is also NP-complete, and a polynomial -time algorithm to this problem is given, whose time complexity is O(n^3).  相似文献   

13.
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996) [3], first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) [3].  相似文献   

14.
若从一个图中去掉某些顶点后得到的导出子图是无圈图,则所去的那些顶点组成的集合就是原图的反馈点集.本文主要考虑外平面图中的反馈点集并给出了一个求外平面图最小顶点赋权反馈点集的线性时间算法.  相似文献   

15.
This paper is a study of the hamiltonicity of proper interval graphs with applications to the guard problem in spiral polygons. We prove that proper interval graphs with 2 vertices have hamiltonian paths, those with 3 vertices have hamiltonian cycles, and those with 4 vertices are hamiltonian-connected if and only if they are, respectively, 1-, 2-, or 3-connected. We also study the guard problem in spiral polygons by connecting the class of nontrivial connected proper interval graphs with the class of stick-intersection graphs of spiral polygons.  相似文献   

16.
A graph is (k1,k2)-colorable if it admits a vertex partition into a graph with maximum degree at most k1 and a graph with maximum degree at most k2. We show that every (C3,C4,C6)-free planar graph is (0,6)-colorable. We also show that deciding whether a (C3,C4,C6)-free planar graph is (0,3)-colorable is NP-complete.  相似文献   

17.
For each rational number q=b/c where bc are positive integers, we define a q-brick of G to be a maximal subgraph H of G such that cH has b edge-disjoint spanning trees, and a q-superbrick of G to be a maximal subgraph H of G such that cHe has b edge-disjoint spanning trees for all edges e of cH, where cH denotes the graph obtained from H by replacing each edge by c parallel edges. We show that the vertex sets of the q-bricks of G partition the vertex set of G, and that the vertex sets of the q-superbricks of G form a refinement of this partition. The special cases when q=1 are the partitions given by the connected components and the 2-edge-connected components of G, respectively. We obtain structural results on these partitions and describe their relationship to the principal partitions of a matroid.  相似文献   

18.
To 80th birthday of Paul Erds  相似文献   

19.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

20.
Let G be a graph and n ≥ 2 an integer. We prove that the following are equivalent: (i) there is a partition (V1,…,Vm) of V (G) such that each Vi induces one of stars K1,1,…,K1,n, and (ii) for every subset S of V(G), G\ S has at most n|S| components with the property that each of their blocks is an odd order complete graph. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 185–190, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号