首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将金纳米粒子(AuNPs)标记的大肠杆菌O157∶H7(E.coli O157∶H7)的多克隆抗体(PAb)作为二抗,采用氨基偶联法将PAb固定在传感器表面作为一抗,通过三明治方法用双通道表面等离子体子共振(SPR)传感器对E.coli O157∶H7进行检测,并与SPR直接法检测进行了比较.结果表明,直接法的检出限为103cfu/mL,线性范围为103~109cfu/mL;AuNPs增强三明治法的检出限为10 cfu/mL,线性范围为10~1010cfu/mL,灵敏度比直接法提高了100倍,且具有更宽的检测范围.本方法不仅检测时间短,而且具有良好的选择性和重现性.  相似文献   

2.
Biosensors are devices which combine a biochemical recognition element with a physical transducer. There are various types of biosensors, including electrochemical, acoustical, and optical sensors. Biosensors are used for medical applications and for environmental testing. Although biosensors are not commonly used for food microbial analysis, they have great potential for the detection of microbial pathogens and their toxins in food. They enable fast or real-time detection, portability, and multipathogen detection for both field and laboratory analysis. Several applications have been developed for microbial analysis of food pathogens, including E. coli O157:H7, Staphylococcus aureus, Salmonella, and Listeria monocytogenes, as well as various microbial toxins such as staphylococcal enterotoxins and mycotoxins. Biosensors have several potential advantages over other methods of analysis, including sensitivity in the range of ng/mL for microbial toxins and <100 colony-forming units/mL for bacteria. Fast or real-time detection can provide almost immediate interactive information about the sample tested, enabling users to take corrective measures before consumption or further contamination can occur. Miniaturization of biosensors enables biosensor integration into various food production equipment and machinery. Potential uses of biosensors for food microbiology include online process microbial monitoring to provide real-time information in food production and analysis of microbial pathogens and their toxins in finished food. Biosensors can also be integrated into Hazard Analysis and Critical Control Point programs, enabling critical microbial analysis of the entire food manufacturing process. In this review, the main biosensor approaches, technologies, instrumentation, and applications for food microbial analysis are described.  相似文献   

3.
Protein A and protein G are extremely useful molecules for the immobilization of antibodies. However, there are limited comparative reports available to evaluate their immobilization performance for use as biosensors. In this study, a comparative analysis was made of approaches that use protein A and protein G for avian leukosis virus detection. The antibody‐protein binding affinities were determined using surface plasmon resonance (SPR) analysis. The immobilization efficiency was obtained by calculating the number of the protein molecular binding sites. The positive influence of sensor response on antigen detection indicates that the amount of immobilized antibody plays a major role in the extent of immobilization. Moreover, the biosensors constructed using both proteins were found to be regenerative. The SPR results from this study suggest that the surfaces of protein G provide a better equilibrium constant and binding efficacy for immobilized antibodies, resulting in enhanced antigen detection.  相似文献   

4.
Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer's health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples-such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring.  相似文献   

5.
We have used a surface plasmon resonance biosensor (SPR, BIACORE 2000) to detect antibodies against glucose 6-phosphate isomerase (GPI) in synovial fluids of rheumatoid arthritis (RA) and osteoarthritis (OA). Recombinant human GPI proteins fused with or without NusA were expressed in E. coli, purified to homogeneity and immobilized in flow cells of CM5 sensor chips. The flow cells immobilized with NusA protein or bovine serum albumin were used to monitor non-specific binding. Synovial fluid samples from RA patients showed a significantly higher level of binding to recombinant GPI proteins than samples from OA patients. Proteins which bound to the recombinant GPI proteins were confirmed to be immunoglobulin through the administration of anti-human immunoglobulin. NusA fusion protein was excellent for this assay because of a low background binding activity in the SPR analysis and its advantage of increased solubility in recombinant protein production. These results suggested a useful utilization of recombinant NusA-GPI fusion protein for the detection of autoantibodies against GPI in RA patients.  相似文献   

6.
The simultaneous analysis of multiple target microorganisms using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with bacteriophage amplification is discussed. Following infection of target bacteria with specific bacteriophages, proteins contained in the progeny phage are utilized as a secondary biomarker for the target bacterium. Escherichia coli when mixed with MS2 and MPSS-1 phages specific for E. coli and Salmonella spp., respectively, at levels below their corresponding detection limits, produced only the protein (13.7 kDa) characteristic of the MS2. Likewise, Salmonella spp. when mixed with the two phages only produced a protein (13.5 kDa) characteristic of MPSS-1. When the two bacteria and the two phages were mixed together, proteins characteristic of MS2 and MPSS-1 were observed indicating that both bacteriophages had been amplified. Identification of each bacterium was made based on the presence of the secondary bacteriophage biomarkers. No deleterious effects on bacteriophage amplification were observed because of the presence of multiple bacteria or bacteriophages.  相似文献   

7.
Fluorescence Polarization Assays (FPAs) have been shown to have great utility in the detection of infectious diseases. Examples are presented of the use of O-polysaccharides (OPSs) for the detection of antibodies in serum, whole milk and whole blood to gram negative organisms (Brucella spp., Salmonella spp.). The use of proteins and peptides are also described for the detection of Mycobacterium bovis and Equine Infectious Anemia Virus. Fluorescence Polarization Inhibition Assays (FPIAs) are discussed for the specific and sensitive detection and quantitation of Salmonella spp. cells from culture. An example of the detection of enterohemorrhagic E. coli (EHECS) by Strand Displacement Amplification (SDA), coupled with FP, down to the single cell level, within thirty minutes, is described.  相似文献   

8.
Yang L  Li Y 《The Analyst》2006,131(3):394-401
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.  相似文献   

9.
A novel, impedance‐based electronic sensor format was used for label‐free, real‐time detection of microbial DNA on oligonucleotide probe arrays. Detection limits of 5–10 nM were achieved for single‐stranded, PCR‐amplified DNA targets. Hybridization selectivity yielded 9‐ to 12‐fold signal increases for specific targets, and the sensor arrays were re‐used multiple times without significant signal degradation. These and other features of the SHARP Laboratories of America (SLA) sensor array, such as its ability to acquire continuous measurements of DNA as it accumulates on the array surface, make it an attractive biosensor platform for field detection and monitoring of sentinel and/or pathogenic microorganisms.  相似文献   

10.
Singlepath Salmonella is an immunochromatographic (lateral flow) assay for the presumptive qualitative detection of Salmonella spp. in food. The AOAC Performance-Tested Method study evaluated Singlepath Salmonella as an effective method for the detection of Salmonella spp. in the following selected foods: dried skimmed milk, black pepper, dried pet food, desiccated coconut, cooked peeled frozen prawns, raw ground beef, and raw ground turkey. When the foods were inoculated with Salmonella spp. at levels ranging from low [0.23-1.08 colony forming units (CFU)/25 g] to high (2.3-6.0 CFU/25 g), a Chi-square value of 0.9 indicated that there was no significant difference between Singlepath Salmonella and the ISO 6579:2002 reference method. Singlepath Salmonella gave a false-positive rate of 7.3% and a false-negative rate of 2.5%. For the inclusivity study, all 105 Salmonella serovars reacted with Singlepath Salmonella. For the exclusivity study, 58 non-Salmonella spp. were tested. There were no cross-reactions with Singlepath Salmonella from these strains.  相似文献   

11.
Surface plasmon resonance (SPR) sensors have been used for detection of various biomolecules because of their simplicity, high specificity and sensitivity, real-time detection, low cost, and no requirement of labeling. Recently, molecularly imprinted polymers that are easy to prepare, less expensive, stable, have talent for molecular recognition and also are used for creation selective binding sites for target molecule on the SPR sensors. Here, we show that preparation of cyclic citrullinated peptide antibody (anti-CCP) imprinted SPR sensor to detect CCP antibodies. For this purpose, anti-CCP/AAm pre-complex was synthesized by interacting acrylamide (AAm) monomer with anti-CCP. Then, anti-CCP imprinted (anti-CCP/PAAm) SPR sensor was obtained by reacting with anti-CCP/AAm pre-complex in the presence of the crosslinker, and initiator/activator pair. Besides this, non-imprinted (PAAm) SPR sensor was also prepared without using anti-CCP template. The SPR sensors were characterized and then adsorption-desorption studies were performed with pH 7.0 phosphate buffer (10 mM) and acetic acid (10%) with Tween 20 (1%) in pH 7.0 phosphate buffer. Selectivitiy of sensors was investigated by using immunoglobulin M (IgM) and bovine serum albumin (BSA). To determine the adsorption model of interactions between anti-CCP solutions and anti-CCP/PAAm SPR sensor, different adsorption models were performed. The calculated maximum reflection, detection limit, association and dissociation constants were 1.079 RU/mL, 0.177 RU/mL, 0.589 RU/mL and 1.697 mL/RU, respectively. Repeatability experiments of anti-CCP/PAAm SPR sensor was performed four times with adsorption-desorption-regeneration cycles without any performance losing. Results showed that anti-CCP/PAAm SPR sensor had high selectivity and sensitivity for detection of CCP antibodies.  相似文献   

12.
A silicon microcantilever sensor was developed for the detection of Escherichia coli O157:H7. The microcantilever was modified by anti-E. coli O157:H7 antibodies on the silicon surface of the cantilever. When the aquaria E. coli O157:H7 positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the E. coli O157:H7 antigen by the antibodies on the surface of the microcantilever. A negative control sample that does not contain E. coli O157:H7 antigen did not cause any bending of the microcantilever. The detection limit of the sensor was 1 x 10(6) cfu/mL when the assay time was < 2 h.  相似文献   

13.
Xu Y  Cheung W  Winder CL  Dunn WB  Goodacre R 《The Analyst》2011,136(3):508-514
Spoilage in meat is the result of the action of microorganisms and results in changes of meat and microbial metabolism. This process may include pathogenic food poisoning bacteria such as Salmonella typhimurium, and it is important that these are differentiated from the natural spoilage process caused by non-pathogenic microorganisms. In this study we investigated the application of metabolic profiling using gas chromatography-mass spectrometry, to assess the microbial contamination of pork. Metabolite profiles were generated from microorganisms, originating from the natural spoilage process and from the artificial contamination with S. typhimurium. In an initial experiment, we investigated changes in the metabolic profiles over a 72 hour time course at 25 °C and established time points indicative of the spoilage process. A further experiment was performed to provide in-depth analysis of the metabolites characteristic of contamination by S. typhimurium. We applied a three-way PARAllel FACtor analysis 2 (PARAFAC2) multivariate algorithm to model the metabolic profiles. In addition, two univariate statistical tests, two-sample Wilcoxon signed rank test and Friedman test, were employed to identify metabolites which showed significant difference between natural spoiled and S. typhimurium contaminated samples. Consistent results from the two independent experiments were obtained showing the discrimination of the metabolic profiles of the natural spoiled pork chops and those contaminated with S. typhimurium. The analysis identified 17 metabolites of significant interest (including various types of amino acid and fatty acid) in the discrimination of pork contaminated with the pathogenic microorganism.  相似文献   

14.
A sensitive and specific electrochemical biosensor based on target‐induced aptamer displacement was developed for direct detection of Escherichia coli O111. The aptamer for Escherichia coli O111 was immobilized on a gold electrode by hybridization with the capture probe anchored on the electrode surface through Au‐thiol binding. In the presence of Escherichia coli O111, the aptamer was dissociated from the capture probe‐aptamer duplex due to the stronger interaction between the aptamer and the Escherichia coli O111. The consequent single‐strand capture probe could be hybridized with biotinylated detection probe and tagged with streptavidin‐alkaline phosphatase, producing sensitive enzyme‐catalyzed electrochemical response to Escherichia coli O111. The designed biosensor showed weak electrochemical signal to Salmonella typhimurium, Staphylococcus aureus and common non‐pathogenic Escherichia coli, indicating high specificity for Escherichia coli O111. Under the optimal conditions, the proposed strategy could directly detect Escherichia coli O111 with the detection limit of 112 CFU mL?1 in phosphate buffer saline and 305 CFU mL?1 in milk within 3.5 h, demonstrated the sensitive and accurate quantification of target pathogenic bacteria. The designed biosensor could become a powerful tool for pathogenic microorganisms screening in clinical diagnostics, food safety, biothreat detection and environmental monitoring.  相似文献   

15.
The proficiency testing program in food microbiology (Réseau d'Analyses et d'Echanges en Microbiologie des Aliments; RAEMA), created in 1988, currently includes 440 participating laboratories. The program establishes proficiency in detection of Salmonella and Listeria monocytogenes, as well as quantitation of aerobic microorganisms, Enterobacteriaceae, coliforms, Escherichia coli, Clostridium perfringens, coagulase-positive Staphylococcus, and Listeria monocytogenes. Twice a year, 5 test samples are sent to participants to assess their precision and trueness for enumeration and detection of microorganisms. Results show an increasing involvement of food microbiology laboratories in quality assurance programs and use of standard and validated analytical methods. However, the percentage of laboratories obtaining questionable and unsatisfactory microbiological results remains relatively constant.  相似文献   

16.
采用表面等离子体共振(SPR)方法, 用鸡蛋黄抗体(IgY)取代传统免疫检测中哺乳动物抗体IgG作为识别分子偶联于CM5传感芯片上, 对人血清中的转铁蛋白进行了检测. 考察了IgY在传感芯片上的偶联条件及芯片的再生条件. 结果表明, 在pH=4.0, IgY浓度为100 μg/mL, 流速为5 μL/min的最佳偶联条件下, SPR响应信号和转铁蛋白浓度在50~500 ng/mL范围内具有良好的线性关系, 检出限为39.56 ng/mL, 对人血清样品检测的日间变异系数<8%, 日内变异系数<5%, 平均回收率为86.22% ~94.51%.  相似文献   

17.
Wang J  Zhu Z  Munir A  Zhou HS 《Talanta》2011,84(3):783-788
Magnetic nanoparticles (MNPs) have been receiving increasing attention because of its great potentials in bioseparation. However, the separation products are difficult to be detected by general method due to their extremely small size. Here, we demonstrate that MNPs can greatly enhance the signal of surface plasmon resonance spectroscopy (SPR). Features of MNPs-aptamer conjugates as a powerful amplification reagent for ultrasensitive immunoassay are reported in this work for the first time. In order to evaluate the sensing ability of MNPs-aptamer conjugates as an amplification reagent, a sandwich SPR sensor is constructed by using thrombin as model analyte. Thrombin, captured by immobilized anti-thrombin aptamer on SPR gold film, is sensitively detected by SPR spectroscopy with a lowest detection limit of 0.017 nM after MNPs-aptamer conjugates is used as amplification reagent. At the same time, the excellent selectivity of the present biosensor is also confirmed by using three kinds of proteins (BSA, human IgM and human IgE) as controls. These results confirm that MNPs is a powerful sandwich element and an excellent amplification reagent for SPR based sandwich immunoassay and SPR has a great potential for the detection of MNPs-based bioseparation products.  相似文献   

18.
Zhu H  Sikora U  Ozcan A 《The Analyst》2012,137(11):2541-2544
We report a cell-phone based Escherichia coli (E. coli) detection platform for screening of liquid samples. In this compact and cost-effective design attached to a cell-phone, we utilize anti-E. coli O157:H7 antibody functionalized glass capillaries as solid substrates to perform a quantum dot based sandwich assay for specific detection of E. coli O157:H7 in liquid samples. Using battery-powered inexpensive light-emitting-diodes (LEDs) we excite/pump these labelled E. coli particles captured on the capillary surface, where the emission from the quantum dots is then imaged using the cell-phone camera unit through an additional lens that is inserted between the capillary and the cell-phone. By quantifying the fluorescent light emission from each capillary tube, the concentration of E. coli in the sample is determined. We experimentally confirmed the detection limit of this cell-phone based fluorescent imaging and sensing platform as ~5 to 10 cfu mL(-1) in buffer solution. We also tested the specificity of this E. coli detection platform by spiking samples with different species (e.g., Salmonella) to confirm that non-specific binding/detection is negligible. We further demonstrated the proof-of-concept of our approach in a complex food matrix, e.g., fat-free milk, where a similar detection limit of ~5 to 10 cfu mL(-1) was achieved despite challenges associated with the density of proteins that exist in milk. Our results reveal the promising potential of this cell-phone enabled field-portable and cost-effective E. coli detection platform for e.g., screening of water and food samples even in resource limited environments. The presented platform can also be applicable to other pathogens of interest through the use of different antibodies.  相似文献   

19.
Gao P  Xu G  Shi X  Yuan K  Tian J 《Electrophoresis》2006,27(9):1784-1789
The rapid detection of pathogenic bacteria is extremely important in biotechnology and clinical diagnosis. CE has been utilized in the field of bacterial analysis for many years, but to some extent, simultaneous separation and identification of certain microbes from complex samples by CE coupled with UV detector is still a challenge. In this paper, we propose a new strategy for rapid separation and identification of Staphylococcus aureus (S. aureus) in bacterial mixtures by means of specific mAb-coated latex coupled with CZE. An appropriate set of conditions that selectively isolated S. aureus from the microorganisms Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were established. S. aureus could be differentiated from the others by unique peaks in the electropherograms. The validity was also confirmed by LIF with antibodies specific to both the latex and the microbial cells. The LOD is as low as 9.0 x 10(5) colony forming unit/mL. We have also utilized this technology to identify S. aureus in a stool sample coming from a healthy volunteer spiked successfully with S. aureus. This CZE-UV technique can be applied to rapid diagnosis of enteritis caused by S. aureus or other bacterial control-related fields needing rapid identification of target pathogens from microbial mixtures. In theory, this method is suitable for the detection of any bacterium as long as corresponding bacterium-specific antibody-coated latex is available.  相似文献   

20.
This study shows the detection of (N-acyl) homoserine lactones (AHLs or HSL) with monoclonal antibodies via a surface plasmon resonance (SPR)-based immunosensor in comparison to conventional microtiter plate-based enzyme-linked immunosorbent assay (ELISA). An HSL derivative, named HSL2 (Table 1), was attached to bovine serum albumin (BSA) and the conjugate (HSL2-BSA-r2) was either covalently immobilised on the SPR sensor chip surface via free amino groups or via adsorption on the ELISA polystyrene plate surface. With a newly developed rat monoclonal antibody (mAb HSL1/2 2C10), AHLs were detected sensitively in a competitive format with SPR and ELISA. Well comparable experiments between SPR and ELISA could be obtained in buffers. Moreover, the SPR sensor surface with the immobilised conjugate HSL2-BSA-r2 could be regenerated at least 340 times (regeneration cycles) without loss of activity. The measurement time per cycle was approximately 15 min. The competitive detection format for SPR and ELISA allowed the detection in the μg L−1 range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号