首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The indium(I) complex [Tp(Bu)()t()2]In ([Tp(Bu)()t()2] = tris(3,5-di-tert-butylpyrazolyl)hydroborato), synthesized by the reaction of [Tp(Bu)()t()2]Na with InCl, exhibits a structure in which the [Tp(Bu)()t()2] ligand adopts a highly twisted configuration due to steric interactions of the tert-butyl substituents in the 5-positions of the pyrazolyl groups. In contrast, the absence of 5-tert-butyl substituents allows the pyrazolyl groups in [Tp(Bu)()t]In to be coplanar with their respective In-N-N-B planes. The structure of [Tp(Bu)()t]In has been previously reported but was noted to exhibit an unusual type of disorder in which a nitrogen atom of one molecule was coincident with the boron atom of its disordered configuration [Dias, H. V. R.; Huai, L.; Jin, W.; Bott, S. G. Inorg. Chem. 1995, 34, 1973-1974]. In view of the unusual nature of the disorder, which involved both a 2-fold rotation and a canting of the molecule, the disordered structure of [Tp(Bu)()t]In was re-evaluated. Significantly, an ordered structure of [Tp(Bu)()t]In was obtained. The disorder present in the previously reported structure is a consequence of adopting a space group with unnecessarily high symmetry. Thus, [Tp(Bu)()t]In provides an example where the structure is much better described as ordered in a noncentrosymmetric space group, rather than disordered in the centrosymmetric alternative. [Tp(Bu)()t()2]In is monoclinic, of space group P2(1)/c (No. 14), with a = 18.781(9) ?, b = 10.380(2) ?, c = 20.849(6) ?, beta = 112.76(3) degrees, and Z = 4. [Tp(Bu)()t]In is orthorhombic, of space group Cmc2(1) (No. 36), with a = 16.193(3) ?, b = 15.214(3) ?, c = 9.963(3) ?, and Z = 4.  相似文献   

3.
The reactions of MCl3 with Li2[PhB(NtBu)2] in 1:1, 1:1.5, and 1:2 molar ratios in diethyl ether produced the monoboraamidinates ClM[PhB(NtBu)2] (1a, M = As; 1b, M = Sb; 1c, M = Bi), the novel 2:3 boraamidinate complexes [PhB(NtBu)2]M-micro-N(tBu)B(Ph)N(tBu)M[PhB(NtBu)2] (2b, M = Sb; 2c, M = Bi), and the bisboraamidinates LiM[PhB(NtBu)2]2 (3a, 3a.OEt2, M = As; 3b, M = Sb; 3c.OEt2, M = Bi), respectively. The 2:3 complexes 2b and 2c were also observed in the reactions carried out in a 1:2 molar ratio at room temperature. All complexes have been characterized by multinuclear NMR spectroscopy (1H, 7Li, 11B, and 13C) and by single-crystal X-ray structural determinations. The molecular units of the mono-boraamidinates 1a-c are isostructural, but their crystal packing is distinct as a result of stronger intermolecular close contacts going from 1a to 1c. In the novel 2:3 bam complexes 2b and 2c, each metal center is N,N'-chelated by a bam ligand and these two [M(bam)]+ units are bridged by the third [bam]2- ligand. The structures of the unsolvated bis-boraaminidate complexes 3a and 3b consist of [Li(bam)]- and [M(bam)]+ monomeric units linked by Li-N and M-N bonds to give a tricyclic structure. Solvation of the Li+ ion by diethyl ether results in a bicyclic structure composed of four-membered BN2As and six-membered BN3AsLi rings in 3a.OEt2. In contrast, the analogous bismuth complex 3c.OEt2 exhibits a tetracyclic structure. Variable-temperature NMR studies reveal that the nature of the fluxional behavior of 3a-c in solution is dependent on the group 15 center.  相似文献   

4.
The metathetical reactions of the lithium derivative of the monoanion [((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(NH(t)Bu)](-) (L) with CuCl/PPh(3), NiCl(2)(PEt(3))(2), PdCl(2)L'(2) (L' = PhCN, PPh(3)), and PtCl(2)(PEt(3))(2) produced the complexes (PPh(3))CuL (5), NiL(2) (6), PdCl(L)(PPh(3)) (7), PdL(2) (8), and Pt(PEt(3))(2)[((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(N(t)Bu)] (9). The X-ray structures of 5, 6, and 8 reveal a N,S-coordination for the chelating monoanion L with the metal centers in trigonal planar, tetrahedral, and square planar environments, respectively. By contrast, the dianionic ligand in the square planar Pt(II) complex 9 is S,S'-chelated to the metal center. (31)P NMR spectra readily distinguish between the N,S and S,S' bonding modes, and, on that basis, N,S chelation is inferred for the Pd(II) complex 7. Crystal data: 5, monoclinic, P2(1)/c, a = 19.175(4) A, b = 20.331(4) A, c = 10.017(6) A, beta = 91.79(3) degrees, V = 3903(2) A(3), and Z = 4; 6, orthorhombic, Pbcn, a = 14.298(5) A, b = 15.333(5) A, c = 24.378(5) A, beta = 90.000(5) degrees, V = 5344(3) A(3), and Z = 4; 8, monoclinic, P2(1)/n, a = 13.975(3) A, b = 14.283(3) A, c = 15.255(4) A, beta = 116.565(18) degrees, V = 2723.5(11) A(3), and Z = 2; 9, monoclinic, P2(1)/n, a = 12.479(6) A, b = 21.782(7) A, c = 17.048(5) A, beta = 100.30(3) degrees, V = 4559(3) A(3), and Z = 4.  相似文献   

5.
Chivers T  Gao X  Parvez M 《Inorganic chemistry》1996,35(15):4336-4341
The reaction of (t)BuNHLi with TeCl(4) in toluene at -78 degrees C produces (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (1) (55%) or [((t)BuNH)Te(&mgr;-N(t)Bu)(2)TeN(t)Bu]Cl (2) (65%) for 4:1 or 7:2 molar ratios, respectively. The complex {Te(2)(N(t)Bu)(4)[LiTe(N(t)Bu)(2)(NH(t)Bu)]LiCl}(2) (5) is obtained as a minor product (23%) from the 4:1 reaction. It is a centrosymmetric dimer in which each half consists of the tellurium diimide dimer 1 bonded through an exocyclic nitrogen atom to a molecule of LiTe(N(t)Bu)(2)(NH(t)Bu) which, in turn, is linked to a LiCl molecule. Crystals of 5 are monoclinic, of space group C2/c, with a = 27.680(6) ?, b = 23.662(3) ?, c = 12.989(2) ?, beta = 96.32(2) degrees, V = 8455(2) ?(3), and Z = 4. The final R and R(w) values were 0.046 and 0.047. At 65 degrees C in toluene solution, 5 dissociates into 1, LiCl, and {[LiTe(N(t)Bu)(2)(NH(t)Bu)](2)LiCl}(2) (4), which may also be prepared by treatment of [Li(2)Te(N(t)Bu)(3)](2) (6) with 2 equiv of HCl gas. The centrosymmetric structure of 6 consists of a distorted hexagonal prism involving two pyramidal Te(N(t)Bu)(3)(2)(-) anions linked by four Li atoms to give a Te(2)N(6)Li(4) cluster. Crystals of 6 are monoclinic, of space group P2(1)/c, with a = 10.194(2) ?, b = 17.135(3) ?, c = 10.482(2) ?, beta = 109.21(1) degrees, V = 1729.0(5) ?(3), and Z = 2. The final R and R(w) values were 0.026 and 0.023. VT (1)H and (7)Li NMR studies reveal that, unlike 1, compounds 2, 4, and 6 are fluxional molecules. Possible mechanisms for these fluxional processes are discussed.  相似文献   

6.
Reaction of the tris(carbene)borate ligand PhB(MeIm)3- with [Mn(CO)3(tBuCN)Br]2 leads to the manganese(I) tricarbonyl complex PhB(MeIm)3Mn(CO)3. In contrast to related complexes that are air-stable, PhB(MeIm)3Mn(CO)3 is O2-sensitive and is converted to a homoleptic MnIV complex. IR and cyclic voltammetry measurements of these complexes establish the exceptionally strong donating nature of the tris(carbene)borate ligand.  相似文献   

7.
[K(2,2,2-crypt)](2)[As(7)]·THF, 1 (2,2,2-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) is the first well characterized seven-atom radical anion of group 15. UV-Vis spectroscopy confirms the presence and electronic structure of [As(7)](2-). Cyclic voltammetry in DMF solution shows the As(7)(3-)/As(7)(2-) redox couple as a one-electron reversible process. Theoretical investigations explore the bonding and properties of compound 1.  相似文献   

8.
Isomeric p- and m-disilaquinodimethanes 2 and 4 were synthesized by the reductive dehalogenation of the corresponding p- and m-bis(halosilyl)benzenes 1 and 3, respectively, and were isolated and structurally characterized. The X-ray diffraction and solid-state NMR studies of 2 revealed its singlet quinodimethane structure featuring two exocyclic Si═C double bonds with some singlet biradical contribution. In contrast, the X-ray crystallography and EPR measurements of 4 disclosed its biradical nature, described as a triplet ground state bis(silyl radical).  相似文献   

9.
The electronic structures of two formally isoelectronic transition-metal dithiolato complexes [Fe(L)2]2- (1) and [Co(L Bu)2]1- (2) both possessing a spin triplet ground state (St=1) have been investigated by various spectroscopic and density functional methods; H2L Bu represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol and H2L is the corresponding unsubstituted benzene-1,2-dithiol. An axial zero-field splitting (D) of +32 cm(-1) for 2 has been measured independently by SQUID magnetometry, far-infrared absorption, and variable-temperature and variable-field (VTVH) magnetic circular dichroism spectroscopies. A similar D value of +28 cm(-1) is obtained for 1 on the basis of VTVH SQUID measurements. The absorption spectra of 1 and 2 are found, however, to be very different. Complex 1 is light yellow in color with no intense transition in the visible region, whereas 2 is deep blue. DFT calculations establish that the electronic structures of the [Fe(L)2](2-) and [Co(L)2]1- anions are very different and explain the observed differences in their absorption spectra. On the basis of these spectroscopic and theoretical analyses, 1 is best described as containing an intermediate spin FeII ion, whereas for the corresponding cobalt complex, oxidation states describing a d6 (CoIII) or d7 (CoII) electron configuration cannot be unambiguously assigned. The physical origin of the large zero-field splitting in both 1 and 2 is found to be due to the presence of low-energy spin-conserved d-d excitations which lead to a large Dzz through efficient spin-orbit coupling. Differential covalency effects appear to be of limited importance for this property.  相似文献   

10.
11.
The first magnesium and zinc boraamidinate (bam) complexes have been synthesized via metathetical reactions between dilithio bams and Grignard reagents or MCl2 (M = Mg, Zn). The following new classes of bam complexes have been structurally characterized: heterobimetallic spirocycles {(L)mu-Li[PhB(mu-NtBu)2]}2M (6a,b, M = Mg, L = Et2O, THF; 6c, M = Zn, L = Et(2)O); bis(organomagnesium) complexes {[PhB(mu3-NtBu)2](MgtBu)2(mu3-Cl)Li(OEt2)3} (8) and {[PhB(mu3-NtBu)2](MgR)2(THF)2} (9a, R = iPr; 9b, R = Ph); mononuclear complex {[PhB(mu-NDipp)2]Mg(OEt2)2} (10). Oxidation of 6a or 6c with iodine produces persistent pink (16a, M = Mg) or purple (16b, M = Zn) neutral radicals {Lx-mu-Li[PhB(mu-NtBu)2]2M}. (L = solvent molecule), which are shown by EPR spectra supported by DFT calculations to be Cs-symmetric species with spin density localized on one of the bam ligands. In contrast, characterization of the intensely colored neutral radicals {[PhB(mu-NtBu)2]2M}. (5c, M = In, dark green; 5d, M = B, dark purple) reveals that the spin density is equally delocalized over all four nitrogen atoms in these D2d-symmetric spirocyclic systems. Oxidation of the dimeric dilithio complex {Li2[PhB(mu4-NtBu)2]}2 with iodine produces the monomeric neutral radical {[PhB(mu-NtBu)2]Li(OEt2)x}. (17), characterized by EPR spectra and DFT calculations. These findings establish that the bam anionic radical [PhB(NtBu)2].- can be stabilized by coordination to a variety of early main-group metal centers to give neutral radicals whose relative stabilities are compared and discussed.  相似文献   

12.
The novel, deca-lithium cage [(mtaNHLi)(As2(Nmta)5)-Li(4).2thf]2 (1) (mtaN = 5-methylthiazolyl, C4H4N2S) contains an imido-bridged tetraanion [(mtaN)2As(mu-Nmta)-As(Nmta)2]4-, which represents a new type of multi-functional imido group 15 ligand framework (homologous with group 15 anions of the type [As(NR)3]3-).  相似文献   

13.
The reaction of [ClP(mu-NtBu)]2 with 1,5-diamino-naphthalene [1,5-(NH2)2C10H6] in Et3N-thf gives the trimeric macrocycle [{P(mu-NtBu)}2{1,5-(NH)2C10H6}]3(1); the X-ray structure of the toluene solvate 1.3toluene reveals a cone-shaped (calixarene-like) arrangement in which toluene guest molecules are trapped within the cavity.  相似文献   

14.
Treatment of NaW2Cl7(THF)5 with 4 equiv of (t)Bu3SiNHLi afforded the C2 W(III) dimer [((t)Bu3SiNH)2WCl]2 (1, d(W triple bond W) = 2.337(2) A), which is a rare, primary amide M2X4Y2 species. Its degradation provided evidence of NH bond activation by the ditungsten bond. Addition of 2 equiv of (t)Bu3SiNHLi or TlOSi(t)Bu3 to 1 yielded H2 and hydride ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) or ((t)Bu3SiN)2((t)Bu3SiO)WH (3). Thermolysis (60 degrees C, 16 h) of 1 in py gave ((t)Bu3SiN)2WHCl(py) (4-py, 40-50%), ((t)Bu3SiN)2WCl2(py) (6-py, 10%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)py2 (5-py2, 5%), whereas thermolysis in DME produced ((t)Bu3SiN)2WCl(OMe) (7, 30%), ((t)Bu3SiN)2WCl2 (6, 20%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)DME (5-DME, 3%). Compound 7 was independently produced via thermolysis of 4-py and DME (-MeOEt, -py), and THF and ethylene oxide addition to hydride 2 gave ((t)Bu3SiN)2((t)Bu3SiNH)WO(n)Bu (8) and ((t)Bu3SiN)2((t)Bu3SiNH)WOEt (9), respectively. Dichloride 6 was isolated from SnCl4 treatment of 1 with the loss of H2. Sequential NH bond activations by the W2 core lead to "((t)Bu3SiN)2WHCl" (4) and subsequent thermal degradation products. Thermolysis of 1 in the presence of H2C=CH(t)Bu and PhC triple bond CPh trapped 4 and generated ((t)Bu3SiN)2W((neo)Hex)Cl (10) and a approximately 6:1 mixture of ((t)Bu3SiN)2WCl(cis-CPh=CPhH) (11-cis) and ((t)Bu(3)SiN)2WCl(trans-CPh=CPhH) (11-trans), respectively. Thermolysis of the latter mixture afforded ((t)Bu3SiNH)((t)Bu3SiN)WCl(eta2-PhCCPh) (12) as the major constituent. Alkylation of 1 with MeMgBr produced ((t)Bu3SiN)2W(CH3)2 (13), as did addition of 2 equiv of MeMgBr to 6. X-ray crystal structure determinations of 1, 2, 5-py2, 6-py, 11-trans, and 12 confirmed spectroscopic identifications. A general mechanism that features a sequence of NH activations to generate 4, followed by chloride metathesis, olefin insertion, etc., explains the formation of all products.  相似文献   

15.
金属氧酸盐因其在医药临床、工业催化、功能材料等方面的广泛应用而引起人们的关注[1~6], 其中, 有关钒化学的研究一直很活跃, 钒具有与钼、钨明显不同的结构特性, 钒可以采取VO4, VO5和VO6方式配位, 同时, 钒的价态可以是+3, +4和+5价. 由于钒可采取多种配位方式及多种价态, 与钼酸盐和钨酸盐相比, 钒酸盐更具有结构柔顺性, 同时易形成低价或混合价态物种.在以往的文献中, 有关P-V-O体系多金属氧酸盐的水热合成的研究已有大量的报道[7], 在常规溶液合成中, 人们已对As-V-O体系进行了相对深入的研究, 而有关水热合成的研究报道却很少, 已见报道的砷钒化合物有K6*6H2O[8,9], 4-[10], 6-[11](X=SO2-3, SO2-4, H2O). 为了探究水热条件下As-V-O体系的反应特性, 我们开展了这方面的研究工作, 并取得了突破性进展. 本文采用中温水热技术合成了含有机基团的砷矾超分子化合物2**4H2O, 探讨这类化合物的非线性光学性质、催化性质及其它功能特性将是一个非常有意义的研究领域.  相似文献   

16.
The rotational barriers (ΔG) about the
bond in PhB(NMe2)NHBut and PhB(NMe2)NHSiMe3 have been determined by variable temperature 13C NMR.  相似文献   

17.
Syntheses and isolations of the tris(amino)stibine and tris(amino)bismuthine E[N(H)(C(6)H(2)(t)Bu(3))](3) (E = Sb, Bi) from ECl(3) and LiN(H)(C(6)H(2)(t)Bu(3)) are described, together with spectroscopic and structural characterization [crystal data for C(54)H(90)N(3)Sb, M = 903.04, space group P&onemacr;, a = 11.491(5) ?, b = 24.652(7) ?, c = 10.002(5) ?, alpha = 98.38(3) degrees, beta = 96.44(5) degrees, gamma = 77.25(3) degrees, V = 2724(2) ?(3), D(c) = 1.101 Mg/m(3), Z = 2, R = 0.0547; crystal data for C(54)H(90)BiN(3), M = 990.27, space group P&onemacr;, a = 11.511(5) ?, b = 24.785(15) ?, c = 9.981(5) ?, alpha = 98.06(5) degrees, beta = 96.50(4) degrees, gamma = 77.40(5) degrees, V = 2742(2) ?(3), D(c) = 1.200 Mg/m(3), Z = 2, R = 0.0619]. The compounds bear the "bulky" 2,4,6-tri-tert-butylphenyl substituent (known as supermesityl or Mes), and their formation is considered in the context of the same reactions for PCl(3) and AsCl(3), which have been previously shown to produce the aminoiminopnictine structures [N(H)(C(6)H(2)(t)Bu(3))]P=N(C(6)H(2)(t)Bu(3)) and [N(H)(C(6)H(2)(t)Bu(3))]As=N(C(6)H(2)(t)Bu(3)). The observations establish the limits of the steric control by the supermesityl substituent and provide qualitative support for the thermodynamic significance of substituent steric strain.  相似文献   

18.
The vibrational and electronic structure of the bis(mu-nitrido) bridged complex [V(N{N"}2)(mu-N)]2 (1) (where [N{N"}2](2-)=[(Me3Si)N{CH(2)CH(2)N(SiMe3)}2](2-)) is analyzed. Assignment of the five modes of the V(2)(mu-N)2 core is based on (15)N isotope shifts and a DFT calculation on the calculated structure I which is an exact reproduction of 1. The three Raman active modes of the planar V(2)(mu-N)2 core are found in the Raman spectrum whereas the two IR allowed vibrations are identified in the infrared spectrum. Furthermore, the electronic structure of is described which complements earlier theoretical studies on the reaction pathway leading to 1(V. M. E. Bates, G. K. B. Clentsmith, F. G. N. Cloke, J. C. Green, H. D. L. Jenkin, Chem. Commun., 2000, 927). Based on the MO scheme of I the UV-vis transitions of 1 are assigned.  相似文献   

19.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

20.
M(2)(O(t)Bu)(6) compounds (M = Mo, W) react in hydrocarbon solvents with an excess of (t)BuSH to give M(2)(O(t)Bu)(2)(S(t)Bu)(4), red, air- and temperature-sensitive compounds. (1)H NMR studies reveal the equilibrium M(2)(O(t)Bu)(6) + 4(t)BuSH <==> M(2)(O(t)Bu)(2)(S(t)Bu)(4) + 4(t)BuOH proceeds to the right slowly at 22 degrees C. The intermediates M(2)(O(t)Bu)(4)(S(t)Bu)(2), M(2)(O(t)Bu)(3)(S(t)Bu)(3), and M(2)(O(t)Bu)(5)(S(t)Bu) have been detected. The equilibrium constants show the M-O(t)Bu bonds to be enthalpically favored over the M-S(t)Bu bonds. In contrast to the M(2)(O(t)Bu)(6) compounds, M(2)(O(t)Bu)(2)(S(t)Bu)(4) compounds are inert with respect to the addition of CO, CO(2), ethyne, (t)BuC triple bond CH, MeC triple bond N, and PhC triple bond N. Addition of an excess of (t)BuSH to a hydrocarbon solution of W(2)(O(t)Bu)(6)(mu-CO) leads to the rapid expulsion of CO and subsequent formation of W(2)(O(t)Bu)(2)(S(t)Bu)(4). Addition of an excess of (t)BuSH to hydrocarbon solutions of [Mo(O(t)Bu)(3)(NO)](2) and W(O(t)Bu)(3)(NO)(py) gives the structurally related compounds [Mo(S(t)Bu)(3)(NO)](2) and W(S(t)Bu)(3)(NO)(py), with linear M-N-O moieties and five-coordinate metal atoms. The values of nu(NO) are higher in the related thiolate compounds than in their alkoxide counterparts. The bonding in the model compounds M(2)(EH)(6), M(2)(OH)(2)(EH)(4), (HE)(3)M triple bond CMe, and W(EH)(3)(NO)(NH(3)) and the fragments M(EH)(3), where M = Mo or W and E = O or S, has been examined by DFT B3LYP calculations employing various basis sets including polarization functions for O and S and two different core potentials, LANL2 and relativistic CEP. BLYP calculations were done with ZORA relativistic terms using ADF 2000. The calculations, irrespective of the method used, indicate that the M-O bonds are more ionic than the M-S bonds and that E ppi to M dpi bonding is more important for E = O. The latter raises the M-M pi orbital energies by ca. 1 eV for M(2)(OH)(6) relative to M(2)(SH)(6). For M(EH)(3) fragments, the metal d(xz)(),d(yz)() orbitals are destabilized by OH ppi bonding, and in W(EH)(3)(NO)(NH(3)) the O ppi to M dpi donation enhances W dpi to NO pi* back-bonding. Estimates of the bond strengths for the M triple bond M in M(2)(EH)(6) compounds and M triple bond C in (EH)(3)M triple bond CMe have been obtained. The stronger pi donation of the alkoxide ligands is proposed to enhance back-bonding to the pi* orbitals of alkynes and nitriles and facilitate their reductive cleavage, a reaction that is not observed for their thiolate counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号