首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study measured sliding acceleration of water droplets on hydrophobic solid surfaces and used expanding and contracting method to compare that value with dynamic contact angles. Sliding action of the droplet was classified into three motion categories: constant accelerated motion, constant velocity and stasis. Differences exist in the dependencies of contact radius and the injection-suction rate in dynamic contact angle hysteresis according to these categories. This method is an effective indicator of water droplets’ sliding acceleration.  相似文献   

2.
Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.  相似文献   

3.
Y.L. Wu  Z. Chen 《Applied Surface Science》2008,254(21):6952-6958
It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.  相似文献   

4.
In this study, hot embossing by reusable Ni mold with features in the form of rectangular diffraction gratings of 4 μm period was successfully employed for surface texturing of polytetrafluoroethylene (PTFE) film above the glass transition temperature of PTFE amorphous phase with the aim to enhance surface hydrophobicity. Imprint pressure was set to 0.5 MPa and it was at least tenfold lower than reported by other authors using cold stamping. Embossed gratings were clearly seen on the surface of all imprinted samples even after the annealing at 140 °C and aging for 1 month at room temperature. The best results were achieved when imprint temperature was 150 °C. Measurements of the water contact angle on imprinted PTFE surfaces have showed that increase of the average contact angle for the current test setup was 8°. Using imprint stamp with the more favorable features may lead to somewhat higher hydrophobicity.  相似文献   

5.
A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168° and the sliding angle is as low as 0.5°. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.  相似文献   

6.
The experimental results on the synthesis and physical properties of the ambient pressure dried hydrophobic silica aerogels in the presence of various surface modification (silylating) agents are presented. The silica aerogels were prepared with 1.12 specific gravity ion exchanged sodium silicate solution, 1N ammonium hydroxide, solvent exchanged with ethanol and hexane, and surface modification with 20% silylating agent in hexane followed by drying the modified gel up to 200 °C. The molar ratio of sodium silicate, water, ammonium hydroxide and silylating agent was kept at 1:45:4.3 × 10−2:5, respectively. The physical properties of the aerogels such as density, % of porosity, pore volume, thermal conductivity and contact angle measurements were studied by using various mono, di and tri alkyl or aryl silylating agents (SAs). The tri alkyl silylating agents produced low % of volume shrinkage (2%), low density (0.06 g/cm3), low refractive index (1.011), more pore volume (16.15cm3/g), high percentage of porosity (96.9%) and hydrophobic (contact angle >150°) silica aerogels. It was found from the Fourier transform infrared spectroscopic (FTIR) studies of the aerogels that the intensity of the bands related to the SiC and CH are more and the SiOH and OH are less with the tri than mono and di alkyl SAs. It was found from the TGA-DTA studies of the aerogels with increase in temperature above 325 °C, the % of weight decrease in TGA and exothermic peak in DTA are more with tri than the mono and di alkyl SAs. The SEM studies of the aerogels showed the large pore and particle sizes in the silica network with the tri alkyl SAs. The % of optical transmission of the aerogels is less with the tri alkyl SAs than the mono and di alkyl SAs. It was found from the contact angle and water adsorption studies that the hydrophobicity of the silica aerogel is more with tri alkyl than the di and mono alkyl silylating agents.  相似文献   

7.
Biwa S  Hiraiwa S  Matsumoto E 《Ultrasonics》2007,47(1-4):123-129
This paper describes ultrasonic measurements of normal and tangential stiffnesses of the contacting interface between polished aluminum blocks subjected to nominal contact pressures up to about 3.8 MPa. These stiffnesses were evaluated by ultrasonic spectroscopy methods for the bulk (longitudinal and transverse) wave reflection coefficients and the anti-symmetric mode interface wave velocity. The measurements revealed the interfacial stiffnesses as functions of the frequency as well as the applied contact pressure. The ratio of the tangential and normal stiffnesses is discussed in the light of foregoing theoretical and experimental findings. Furthermore, possible explanations for the frequency dependence of the measured stiffnesses are reviewed, invoking the spatial inhomogeneity of the interfacial stiffness as well as its lossy nature.  相似文献   

8.
Static and dynamic hydrophobicities of water droplet on a patterned surface prepared using fluoroalkylsilanes with different molecular chain lengths were investigated. Contact angles on the patterned surfaces well agreed with values predicted using Cassie’s theory. On the same line width ratio, total retention force was governed by the fluoroalkylsilane with slow-sliding acceleration. The total retention force decreased with the decreasing width ratio of silane with slow-sliding acceleration on the surface. These results imply that the sliding acceleration of water droplets on a hydrophobic surface depends both on chemical composition and patterning structure.  相似文献   

9.
Surface properties of a large number of amorphous carbon (a-C) films have been investigated using contact angle measurements and X-ray photoelectron spectroscopy (XPS). Dense a-C surfaces with variable sp3/(sp2 + sp3) average hybridization were grown using sputtering or pulsed laser deposition (PLD) and were further chemically modified by thermal annealing, ion bombardment or covalent grafting of organic monolayers. The average carbon hybridization, impurity level and mass density, were deduced from XPS and photoelectron energy loss spectroscopy (PEELS). The depth sensitivity of the dispersive (Lifshitz–van der Waals) interaction, estimated at 1–2 nm from the dependence of γLW on the grafted perflorodecene molecule coverage, is much better than XPS which probes a 3–5 nm depth. The observation of a non-monotonic behavior in the correlation between surface hybridization and electron donor component of surface energy reveals that the average carbon hybridization alone does not describe the entire surface energy physics. The role of π bond clustering in the polar interactions is thus considered and some implications on surface reactivity and mutual interactions with molecular or biomolecular species are discussed.  相似文献   

10.
This article reports the use of dip pen nanolithography (DPN) for the study of adsorption of bovine serum albumin (BSA) proteins on amorphous carbon surfaces; tetrahedral amorphous carbon (t-aC) and silicon doped hydrogenated amorphous carbon (a-C:H:Si). Contact angle study shows that the BSA proteins reduce the contact angle on both carbon materials. We also noticed that the drop volume dependence is consistent with a negative line tension, i.e. due to an attractive protein/surface interaction. The DPN technique was used to write short-spaced (100 nm) BSA line patterns on both samples. We found a line merging effect, stronger in the case of the a-C:H:Si material. We discuss possible contributions from tip blunting, scratching, cross-talk between lever torsion and bending and nano-shaving of the patterns. We conclude that the observed effect is caused in large measure by the diffusion of BSA proteins on the amorphous carbon surfaces. This interpretation of the result is consistent with the contact angle data and AFM force curve analysis indicating larger tip/surface adhesion and spreading for the a-C:H:Si material. We conclude by discussing the advantages and limitations of DPN lithography to study biomolecular adsorption in nanoscale wetting environments.  相似文献   

11.
Study on hydrophilicity of polymer surfaces improved by plasma treatment   总被引:2,自引:0,他引:2  
Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that CO bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.  相似文献   

12.
In this work, we have prepared a series of samples with five representative surface wettabilities: i.e. superhydrophilic, hydrophilic, critical, hydrophobic and superhydrophobic. These samples were in situ observed the freezing process of water droplets on clean and artificially contaminated surfaces to investigate the relationship between surface wettability and ice formation. Ice accretion was also tested by spraying supercooled water to samples at different horizontal inclination angles (HIA). Surface topography was proved to be essential to the icing through heterogeneous nucleation. However, the correlation between surface wettability and ice formation was not observed. Finally, we found that the superhydrophobic surface clearly exhibited reduced ice accumulation in the initial stage of ice formation associated with the lower sliding angle (SA) of water droplets.  相似文献   

13.
The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.  相似文献   

14.
Static and dynamic wetting behaviors of sessile droplet on smooth, microstructured and micro/nanostructured surface under condensation condition are systematically studied. In contrast to the conventional droplet wetting on such natural materials by dropping, we demonstrate here that when dropwise condensation occurs, the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface, which leads to a strong adhesion between the droplet and the substrate. In contrast, the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness. Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation, and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.  相似文献   

15.
Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear.  相似文献   

16.
Wetting behavior of magnesite and dolomite surfaces   总被引:2,自引:0,他引:2  
Magnesite and dolomite are salt-type minerals that show similar chemical composition and flotation behavior due to same crystal structure, and sparingly soluble nature. The surface properties of minerals play a major role in determining their separation from each other in processes such as flotation. During flotation process, selectivity problem arises between magnesite and associated gangue minerals such as dolomite. There is a close relationship between floatability of minerals and their contact angles. Therefore, surface hydrophobicity of magnesite and dolomite minerals was investigated by contact angle measurements in the absence and presence of flotation reagents.Magnesite and dolomite show hydrophilic properties and they have got a small contact angle (magnesite ∼10.4° and dolomite ∼6.6°) in distilled water in the absence of any surfactant. The contact angle values at the magnesite and dolomite surfaces remained at 9.7°-10.9° in the presence of petroleum sulphonates (R825 and R840) while sodium oleate affected hydrophobicity of magnesite, and the contact angle value increased up to 79°. The contact angle value of 39° at dolomite surface was obtained in the solution of sodium oleate, respectively.  相似文献   

17.
A new laser shadowgraphy method is presented to measure the dynamic contact angle of a sessile drop on a nontransparent metal substrate and simultaneously visualize flow motions inside the drop. A collimated laser beam is refracted into the drop, then reflected on the substrate surface and finally refracted out of the drop to form a shadowgraphic image on a screen. The instant diameters of the refracted-shadowgraphic image, cooperated with the corresponding instant contact-diameters of the drop measured from the magnified top view, are used to determine the instant contact angles of the sessile drop. At the same time, flow motions, if any, in the drop can be visualized from the refracted-shadowgraphic image. The new method is demonstrated to be a very simple, accurate, and unique optical technique for simultaneous measuring of the dynamic contact angle of a liquid drop spreading on a nontransparent metal substrate with flow visualization in the drop.  相似文献   

18.
Two biomimetic superhydrophobic polymeric surfaces were obtained by a simple approach under ambient atmosphere. Water and ethanol were used as the nonsolvents in the method of phase separation in different systems. The influences of various factors in the process were investigated. Both of the as-prepared films showed excellent superhydrophobicity, depending on the high contact angle and the low contact angle hysteresis. Moreover, the classic and a new modified Cassie-Baxter relation were used on the polystyrene and poly-α-methyl styrene films to confirm the superhydrophobic performance.  相似文献   

19.
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.  相似文献   

20.
Elongated microvoids, internal fibrillar structure, and edge scattering from both surface refraction cause an equatorial streak in small angle X-ray scattering. A model for analyzing the edge scattering of fibers is proposed. Simulation results indicate that the intensity of edge scattering from surface refraction of a cylindrical fiber is strong and makes an important contribution to the equatorial streak. Two factors influence edge scattering intensity. One is the sample-to-detector distance (D); edge scattering intensity increases with increasing D. The equatorial streak becomes weak when D is shortened. The other factor is the refraction index. Edge scattering intensity increases as the real component of the refraction index decreases. In experiment, weak or even no equatorial streaks were found for samples measured in a roughly index-matching fluid. Edge scattering can be eliminated or weakened, and it can be calculated by comparing the intensities of a cylindrical fiber when it is measured in air and in index-matching fluid. The simulation data are basically in agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号