首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The application of the Rayleigh-Ritz method for approximating the eigenvalues and eigenfunctions of linear eigenvalue problems in several dimensions is investigated. The object is to improve upon known error estimates for the approximate eigenfunctions. Results for the Galerkin approximation of the eigenfunctions are developed under varying assumptions on the boundary conditions and domain of definition of the eigenvalue problem. These results, coupled with a previous result relating Galerkin and Rayleigh-Ritz approximation of the eigenfunctions, are then used to obtain improved error estimates for the approximate eigenfunctions in theL 2 and uniform norms.This research was supported in part by AEC Grant (11-1)-2075.  相似文献   

2.
In this paper, the interpolating moving least-squares (IMLS) method is discussed in details. A simpler expression of the approximation function of the IMLS method is obtained. Compared with the moving least-squares (MLS) approximation, the shape function of the IMLS method satisfies the property of Kronecker δ function. Then the meshless method based on the IMLS method can overcome the difficulties of applying the essential boundary conditions. The error estimates of the approximation function and its first and second order derivatives of the IMLS method are presented in n-dimensional space. The theoretical results show that if the weight function is sufficiently smooth and the order of the polynomial basis functions is big enough, the approximation function and its partial derivatives are convergent to the exact values in terms of the maximum radius of the domains of influence of nodes. Then the interpolating element-free Galerkin (IEFG) method based on the IMLS method is presented for potential problems. The advantage of the IEFG method is that the essential boundary conditions can be applied directly and easily. For the purpose of demonstration, some selected numerical examples are given to prove the theories in this paper.  相似文献   

3.
A discontinuous Galerkin method for the numerical approximation for the time-dependent Maxwell’s equations in “stable medium” with supraconductive boundary, is introduced and analysed. its hp-analysis is carried out and error estimates that are optimal in the meshsize h and slightly suboptimal in the approximation degree p are obtained.  相似文献   

4.
In this paper, we apply finite element Galerkin method to a singlephase quasi-linear Stefan problem with a forcing term. We consider the existence and uniqueness of a semidiscrete approximation and optimal error estimates inL 2, L,H 1 andH 2 norms for semidiscrete Galerkin approximations are derived.  相似文献   

5.
We present guaranteed and computable both sided error bounds for the discontinuous Galerkin (DG) approximations of elliptic problems. These estimates are derived in the full DG-norm on purely functional grounds by the analysis of the respective differential problem, and thus, are applicable to any qualified DG approximation. Based on the triangle inequality, the underlying approach has the following steps for a given DG approximation: (1) computing a conforming approximation in the energy space using the Oswald interpolation operator, and (2) application of the existing functional a posteriori error estimates to the conforming approximation. Various numerical examples with varying difficulty in computing the error bounds, from simple problems of polynomial-type analytic solution to problems with analytic solution having sharp peaks, or problems with jumps in the coefficients of the partial differential equation operator, are presented which confirm the efficiency and the robustness of the estimates.  相似文献   

6.
Summary Numerical approximation of a parabolic control problem with a Neumann boundary condition control is considered. The observation is the final state. The numerical approximation is based on backward discretization with respect to time and a Galerkin method in the space variables. Optimal (except for a logarithmic term) L2 error estimates are derived for the optimal state. Certain error estimates for the optimal control are also given. Entrata in Redazione il 4 maggio 1977. This work was supported by the Norwegian Research Council for Science and the Humanities.  相似文献   

7.
In this paper, we apply finite element Galerkin method to a single-phase linear Stefan problem with a forcing term. We apply the extrapolated Crank-Nicolson method to construct the fully discrete approximation and we derive optimal error estimates in the temporal direction inL 2,H 1 spaces.  相似文献   

8.
Summary The purpose of this article is to obtainL 2 and uniform norm error estimates for the Galerkin approximation of the solution of certain boundary value problems via a comparison with then-norm projection of the solution. In some cases, these estimates constitute an improvement over known results.This research was supported in part by AEC Grant (11-1)-2075.  相似文献   

9.

Galerkin boundary element methods for the solution of novel first kind Steklov-Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in two- and three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations, we propose practical variants of the Galerkin scheme and give corresponding error estimates. We also discuss the actual implementation process with suitable preconditioners and propose an optimal hybrid solution strategy.

  相似文献   


10.
For a general class of finite element spaces based on local polynomial spaces E with PpEQp we construct a vertex-edge-cell and point-value oriented interpolation operators that fulfil anisotropic interpolation error estimates.Using these estimates we prove ε-uniform convergence of order p for the Galerkin FEM and the LPSFEM for a singularly perturbed convection-diffusion problem with characteristic boundary layers.  相似文献   

11.
Galerkin methods for nonlinear Sobolev equations   总被引:2,自引:0,他引:2  
Summary We study Galerkin approximations to the solution of nonlinear Sobolev equations with homogeneous Dirichlet boundary condition in two spatial dimensions and derive optimalL 2 error estimates for the continuous Crank — Nicolson and Extrapolated Crank — Nicolson approximations.  相似文献   

12.
We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.  相似文献   

13.
In this paper, we consider the numerical approximation for the fractional diffusion-wave equation. The main purpose of this paper is to solve and analyze this problem by introducing an implicit fully discrete local discontinuous Galerkin method. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully we prove that our scheme is unconditionally stable and get L 2 error estimates of \(O(h^{k+1}+(\Delta t)^{2}+(\Delta t)^{\frac {\alpha }{2}}h^{k+1})\) . Finally numerical examples are performed to illustrate the efficiency and the accuracy of the method.  相似文献   

14.
In this note, we prove error estimates in natural norms on the approximation of the boundary data in the elliptic Cauchy problem, for the finite element method first analysed in E. Burman, Error estimates for stabilised finite element methods applied to ill-posed problems, C. R. Acad. Sci. Paris, Ser. I 352 (7–8) (2014) 655–659.  相似文献   

15.
本文对周期边界条件Navier-Stokes方程,证明了其Fourier非线性Galerkin逼近解的存在唯一性,同时给出了逼近解的误差估计.  相似文献   

16.
We present an error analysis for the pathwise approximation of a general semilinear stochastic evolution equation in d dimensions. We discretise in space by a Galerkin method and in time by using a stochastic exponential integrator. We show that for spatially regular (smooth) noise the number of nodes needed for the noise can be reduced and that the rate of convergence degrades as the regularity of the noise reduces (and the noise becomes rougher).  相似文献   

17.
Here we present the asymptotic error analysis for the boundary element approximation of the direct boundary integral equations for the plane mixed boundary value problem of the Laplacian. The boundary elements are defined by B-splines for the smooth parts of the boundary charges and additional singular functions at the collision points. The asymptotic error estimates include estimates for the stress intensity factors which occur as additional unknowns to be computed within the Galerkin scheme. The numerical analysis is based on the uniqueness of the problem, a coerciveness inequality, the triangular principal part and an extended shift theorem of the boundary integral operators.  相似文献   

18.
Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H1 norm best approximation error estimates for H2 functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on an example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily low speed. The results complement analogous findings for conforming P1 finite elements.  相似文献   

19.
20.
This work is devoted to the optimal and a posteriori error estimates of the Stokes problem with some non-standard boundary conditions in three dimensions. The variational formulation is decoupled into a system for the velocity and a Poisson equation for the pressure. The velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. Next, we establish optimal a posteriori estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号