首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

2.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

3.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

4.
We have investigated the effect of Ge, GePt underlayers on the formation of ordered L10 FePt films. With Ge underlayer, the Ge3Pt2 compound was formed during post-annealing at 400 °C for 1 h. Interlayer diffusion of Ge and FePt layer suppress the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 350 °C and the in-plane coercivity was 5.1 kOe. The ordering temperature was reduced to about 50 °C compared to the single-layer FePt film.  相似文献   

5.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

6.
In the present study, we succeeded in accelerating the L10 ordering transition of FePt thin films by employing amorphous Ni-Al as underlayers. The coercivity Hc = 5 kOe and ordering parameter S = 0.67 of FePt thin films deposited on a Ni-Al underlayer with a thickness of ∼5 nm after 380 °C annealing for 30 min are significantly higher than those Hc = 0.4 kOe and S = 0.35 of the films without the Ni-Al underlayer. The L10 ordering process of and the coercivity of FePt thin films can be significantly tuned by varying the thickness of the Ni-Al underlayer.  相似文献   

7.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

8.
Granular L10 FePt (0 0 1) thin films were deposited on a Si substrate with Ta/MgO underlayers by rf sputtering. The effects of in-situ heating temperatures (350-575 °C), pressures (2-40 mTorr), and sputtering powers (15-75 W) on texture and microstructure were investigated for the FePt films. We obtained films with grain densities approaching 50 teragrains per in.2, grains sizes down to 2.2 nm with center-to-center spacing of 4.2 nm and coercivity of 24 kOe. The order parameters for the L10 FePt thin films were derived and calculated to be as high as 0.91. Although the grain size is small, the spacing between grains is too large for practical heat assisted magnetic recording media. To reach the desired results, we propose that layer-by-layer growth should be promoted in the FePt layer by inserting another underlayer that provides a better lattice match to L10 FePt.  相似文献   

9.
We have explored the interlayer diffusion effect of Ge/FePt, GePt/FePt bilayer on the formation of ordered L10 FePt phase. In Ge/FePt bilayer, the Ge3Pt2 compound was formed during post annealing at 400oC for 1.0 h. Diffusion between Ge and FePt layer suppres the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 400 °C and the in-plane coercivity was 9.3 kOe. The ordering temperature was reduced about 50 °C compared to the single layer FePt film.  相似文献   

10.
High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L10 ordering transformation occurs at 500 °C. Coercivity (Hc) is increased with the annealing temperature in the studied range 400–800 °C. The Hc value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L10 lattice is negligible even after a high-temperature (800 °C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll0 particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix.  相似文献   

11.
FePt and FePt/Cr films were epitaxially grown on MgO (2 0 0) substrates at 350 °C by DC magnetron sputtering. The structural properties and epitaxial relationship are investigated by high-resolution X-ray diffraction (XRD). The XRD spectra revealed that both FePt and FePt/Cr films had a (0 0 1) preferred orientation. However, FePt films with Cr underlayers had a larger a and a smaller c than those of the samples without Cr underlayers. Furthermore, the FePt (0 0 1) peak characterized by its rocking curves became less pronounced when the Cr underlayer was applied. The off-spectra from the MgO (1 1 1), Cr (1 0 1) and FePt (1 1 1) demonstrated that the epitaxial relationship between the FePt film, Cr underlayer and MgO substrate was confirmed to be FePt (0 0 1)<100> || Cr (1 0 0)<1 1 0> || MgO (1 0 0)<0 0 1>. The domain size and Ms decreased when the Cr underlayer was applied due to the diffusion of Cr and the existence of the initial layer between Cr and FePt layers.  相似文献   

12.
We report (FePt)Ag-C granular thin films for potential applications to ultrahigh density perpendicular recording media, that were processed by co-sputtering FePt, Ag, and C targets on MgO underlayer deposited on thermally oxidized Si substrates. (FePt)1−xAgx-yvol%C (0<x<0.2, 0<y<50) films were fabricated on oxidized silicon substrates with a 10 nm MgO interlayer at 450oC. We found that the Ag additions improved the L10 ordering and the granular structure of the FePt-C films with the perpendicular coercivity ranging from 26 to 37 kOe for the particle size of 5-8 nm. The (FePt)0.9Ag0.1-50vol%C film showed the optimal magnetic properties as well as an appropriate granular morphology for recording media, i.e., average grain size of Dav=6.1 nm with the standard deviation of 1.8 nm.  相似文献   

13.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

14.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

15.
L10-ordered FePt thin films prepared by molecular-beam epitaxy on MgO (0 0 1) substrate at 320 °C with different thickness of Pt buffer layer have been investigated. The out-of-plane coercivity increases with increasing thickness of Pt buffer. The maximum values of the long-range order parameter and uniaxial magnetic anisotropy energy are 0.72 and 1.78×107 erg/cm3, respectively, for films with 12 nm thick Pt buffer layer, where the c/a ratio (0.976) shows the minimum value. The reason for the enhancement in ordering is due to the proper lattice strains Pt buffer bestows on FePt layer, these strains are equal to the contraction in lattice parameter c and the expansion in a. Studies of angular-dependent coercivity revealed that the magnetization reversal behaviour shifts from a domain-wall motion dominated case towards a near rotational mode with increasing thickness of Pt buffer layer.  相似文献   

16.
FePt/B4C multilayer composite films were prepared by magnetron sputtering and subsequent annealing in vacuum. By changing Fe layer thickness of [Fe/Pt]6/B4C films, optimal magnetic property (8.8 kOe and remanence squareness is about 1.0) is got in [Fe(5.25 nm)/Pt(3.75 nm)]6/B4C sample whose composition is Fe rich and near stoichiometric ratio. The characterizations of microstructure demonstrate that the diffusion of B and C atoms into FePt layer depends strongly on B4C interlayer thickness. When B4C interlayer thickness of [Fe(2.625 nm)/Pt(3.75 nm)/Fe(2.625 nm)/B4C]6 films is bigger than 3 nm, stable value of grain size (6-6.5 nm), coercivity (6-7 kOe) and hardness (16-20 GPa) is observed. Finally, the multifunctional single FePt/B4C composite film may find its way to substitute traditional three-layer structure commonly used in present data storage technology.  相似文献   

17.
A method based on strain-induced phase transformation was used to lower the ordering temperature of FePt films. The strain resulted from the lattice mismatch between the FePt film and the substrate or underlayer favored the ordering. The relationships between the lattice mismatch, the ordering of FePt film, and the corresponding magnetic anisotropic constant were investigated. A critical lattice mismatch near 6.33% was believed to be most suitable for improving the chemical ordering of the FePt films. CrX (X=Ru, Mo, W, Ti) alloys with (2 0 0) texture was used to control the easy axis and ordering temperature of FePt films on glass substrate. Large uniaxial anisotropy constant Ku?1×107 erg/cm3, good magnetic squareness (∼1) and FePt(0 0 1) texture (rocking curve −5°) were obtained at the temperature Ts?250 °C when using CrRu underlayer. The diffusion from overlying layers of Ag and Cu and an inserted Ag pinning layer were effective in reducing the exchange decoupling and changing the magnetization reversal. The media noise was effectively reduced and the SNR was remarkably enhanced when a 2 nm Ag was inserted.  相似文献   

18.
The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 °C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase.  相似文献   

19.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

20.
The effect of ultrathin Fe underlayer on the strong in-plane magnetization of FePt magnetic thin film was investigated. This FePt thin film could be attained using the ultrathin Fe underlayer with 1 nm thickness. The in-plane coercivity of FePt film with 20 nm thickness grown on ultrathin Fe underlayer was high up to 7400 Oe. However, its out-of-plane coercivity was extremely low to 350 Oe compared to those of FePt thin films in other conventional studies. This result indicates that FePt thin film was strongly in-plane magnetized by ultrathin Fe underlayer. The strong ordering phase transformation kinetics and the high texturing to in-plane direction of the FePt thin film by ultrathin Fe underlayer were confirmed by Kinetics Monte Carlo (KMC) simulation and XRD measurement result, respectively. It is also supposed that they are associated with the reduction of an interface free energy between the film and the substrate with an introduction of ultrathin underlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号