首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Undoped and Mg-doped ZnO thin films were deposited on Si(1 0 0) and quartz substrates by the sol-gel method. The thin films were annealed at 873 K for 60 min. Microstructure, surface topography and optical properties of the thin films have been measured by X-ray diffraction (XRD), atomic force microscope (AFM), UV-vis spectrophotometer, and fluorophotometer (FL), respectively. The XRD results show that the polycrystalline with hexagonal wurtzite structure are observed for the ZnO thin film with Mg:Zn = 0.0, 0.02, and 0.04, while a secondary phase of MgO is evolved for the thin film with Mg:Zn = 0.08. The ZnO:Mg-2% thin film exhibits high c-axis preferred orientation. AFM studies reveal that rms roughness of the thin films changes from 7.89 nm to 16.9 nm with increasing Mg concentrations. PL spectra show that the UV-violet emission band around 386-402 nm and the blue emission peak about 460 nm are observed. The optical band gap calculated from absorption spectra and the resistivity of the ZnO thin films increase with increasing Mg concentration. In addition, the effects of Mg concentrations on microstructure, surface topography, PL spectra and electrical properties are discussed.  相似文献   

2.
In this work, the effect of Mg doping on the performance of PbS quantum dot (QD) solar cells (QDSCs) is investigated. To elucidate that, PbS QDSCs with pristine ZnO and Mg-doped ZnO (ZMO) as electron transporting layers (ETLs) are fabricated, respectively. The current density-voltage (J-V) measurements are performed. The results show that the cell efficiency of the device with ZMO as an ETL is 9.46%, which increases about 75% compared to that of the pristine ZnO based device (5.41%). Enhanced short current density (Jsc) and fill factor (FF) are observed. It is demonstrated that Mg doping could passivate the surface defects and suppress the carrier recombination in ZnO ETL, thus resulting in larger bandgap and higher Fermi level (EF). The strategy of Mg-doped ZnO ETL provides a promising way for pushing solar cell performance to a high level.  相似文献   

3.
Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ∼395 nm and ∼413 nm, compared to pure ZnO column arrays.  相似文献   

4.
Fabrication and properties of ZnO:Cu and ZnO:Ag thin films   总被引:1,自引:0,他引:1  
Thin films of ZnS and ZnO:Cu were grown by an original metal–organic chemical vapour deposition (MOCVD) method under atmospheric pressure onto glass substrates. Pulse photo-assisted rapid thermal annealing of ZnO:Cu films in ambient air and at the temperature of 700–800 C was used instead of the common long-duration annealing in a vacuum furnace. ZnO:Ag thin films were prepared by oxidation and Ag doping of ZnS films. At first a closed space sublimation technique was used for Ag doping of ZnO films. The oxidation and Ag doping were carried out by a new non-vacuum method at a temperature >500 C. Crystal quality and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL). It was found that the doped films have a higher degree of crystallinity than undoped films. The spectra of as-deposited ZnO:Cu films contained the bands typical for copper, i.e. the green band and the yellow band. After pulse annealing at high temperature the 410 and 435 nm photoluminescent peaks were observed. This allows changing of the emission colour from blue to white. Flat-top ZnO:Ag films were obtained with the surface roughness of 7 nm. These samples show a strong ultraviolet (UV) emission at room temperature. The 385 nm photoluminescent peak obtained is assigned to the exciton–exciton emission.  相似文献   

5.
Uniform and flat single crystal ZnO:P nanobelts (NBs) were fabricated on Si (1 0 0) substrates by the thermal evaporation method. The growth process, free-catalyst self-assembly vapor-solid (V-S) mechanism, was described and investigated deeply in terms of thermodynamics and kinetics. Then, the photoluminescence (PL) properties of ZnO NBs were studied in a temperature range from 10 to 270 K. At 10 K the recombination of acceptor-bound exciton (A0X) was predominant in the PL spectrum, and was attributed to the transition of PZn−2VZn complex bound exciton. The active energy of A0X and acceptor binding energy were calculated to be 17.2 and 172 meV, respectively. The calculated acceptor binding energy of P doped ZnO nanostructure is in good agreement with that of P doped ZnO film.  相似文献   

6.
7.
One- and two-step rapid thermal annealing (RTA) for activating Mg-doped p-type GaN films had been performed to compare with conventional furnace annealing (CFA). The two-step annealing process consists of two annealing steps: the first step is performed at 750 °C for 1 min and the second step is performed at 600 °C for 5 min in pure O2 or air ambient. It is found that the samples annealed in air ambient exhibit poor electrical properties as compared to those annealed in pure O2. Compared to one-step RTA annealing and CFA annealing, the samples with two-step annealing exhibit higher hole concentration and lower resistivity. This means that the two-step annealing is a powerful method to enhance the electrical performance of Mg-doped p-type GaN films. Similar results were also evidenced by photoluminescence (PL) measurement. Possible mechanism was confirmed by secondary ion mass spectrometry analysis.  相似文献   

8.
Rod-like ZnO nanoparticles were prepared by the hydrolysis of zinc acetate under heating in diethylene glycol (DEG). Structural characterization of the synthesized powders was investigated by XRD, FT-IR, electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM). The size of the particles increased as the amount of H2O added increased in the nano size range. The average crystallite size calculated from the XRD patterns varied from 6 to 64 nm corresponding to the amount of H2O added. The ZnO nanopartilces possess the wurtzite type crystallographic structure. It was found that these ZnO nanoparticles had singly ionized oxygen vacancy defect () and superoxide ions from the EPR investigations. A strong near UV emission of the ZnO nanoparticles at about 380 nm was observed and its intensity decreased as the amount of H2O increased. This emission of ZnO nanoparticles is found to be particles size dependent due to the confinement effect. A green emission at about 540 nm due to the recombination of electrons trapped at singly ionized oxygen vacancies defect () appeared when the amount of H2O increased. The intensity of the green emission increases as the concentration of increases.  相似文献   

9.
Nanocrystalline zinc oxide (nc-ZnO) films were prepared by a sol-gel process on p-type single-crystalline Si substrates to fabricate nc-ZnO/p-Si heterojunctions. The structure and morphology of ZnO films on Si substrates, which were analyzed by X-ray diffraction (XRD) spectroscopy and atomic force microscopy (AFM), showed that ZnO films consisted of 50-100 nm polycrystalline nanograins with hexagonal wurtzite structure. The electrical transport properties of the nc-ZnO/p-Si heterojunctions were investigated by temperature-dependent current-voltage (I-V) measurements and room temperature capacitance-voltage measurements. The temperature-dependent I-V characteristics revealed that the forward conduction was determined by multi-step tunneling current, and the activation energy of saturation current was about 0.26 eV. The 1/C2-V plots indicated the junction was abrupt and the junction built-in potential was 1.49 V at room temperature.  相似文献   

10.
Photoluminescence properties of various CVD-grown ZnO nanostructures   总被引:3,自引:0,他引:3  
We have studied systematically room-temperature photoluminescence (PL) properties of many nanostructured ZnO samples grown by chemical vapour deposition (CVD). Their PL spectra consist of two emissions peaked in the ultraviolet (UV) and green regions. The relative intensity of these emissions depends on the excitation energy density, size and morphology of ZnO nanostructures. Based on the excitation-density dependence of the integrated intensity ratio of UV-to-green emission, we could classify PL spectra of ZnO nanostructures into three groups characteristic of size and morphology. Our study also reveals that with increasing excitation density, the UV-peak position shifts slightly towards longer wavelengths while the green emission around 514-520 nm is almost unchanged. This green-luminescence emission is dominant when the nanostructure sizes range from 20 to 200 nm, which is related to a large surface-to-volume ratio.  相似文献   

11.
A novel stepwise method was developed for the deposition of ZnO nanorod array (NRA) from the simple inorganic aqueous solution. Different from the traditional one-pot synthesis route, merely a thin liquid precursor layer adsorbed on the substrate instead of the bulk solution underwent the reaction at elevated temperature in a typical deposition cycle. Sparse and vertically grown wurtzite ZnO NRA was deposited on seed layer-free glass substrate after 20 cycles (in typically 20 min). Each individual ZnO rod possessed the well-defined hexagonal facet, the side length of about 150 nm, the aspect ratio of 2:3, and the small size dispersity. Also the overall ZnO NRA exhibited high ultraviolet photoluminescence and weak blue emission, indicating its good optical properties. Mechanism analysis indicated that, the decrease of the supersaturation degree in solution after the climax in the reaction period of each deposition cycle is the root cause of the sparse nucleation and the vertical growth of ZnO nanorods. The work has opened up a novel stepwise approach toward high quality ZnO NRA, being valuable for extending the synthetic methods of semiconductor nanostructures in mild solutions.  相似文献   

12.
纳米ZnO微晶的合成及其发光特性   总被引:1,自引:2,他引:1  
以醋酸锌和尿素为主要原料,利用沉淀-水热法一步合成了纳米ZnO微晶。用XRD,TEM,FTIR等测试技术及光致发光光谱(PL)对纳米ZnO微晶进行了表征,并对其发光特性进行了分析。研究表明:该合成方法操作简单,得到的纳米ZnO颗粒基本无团聚,结晶性较好,平均粒径约为17.2 nm,并在500~750 nm范围内出现宽的PL峰, 呈现出纳米材料的发光特征。  相似文献   

13.
A simple method of thermal evaporation to fabricate micro and nanostructures of zinc oxide was presented. ZnO micro and nanostructures, prepared under different quantity of O2, were characterized by techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and analytical transmission electron Microscope. The SEM images indicated that the products prepared under the condition of sufficient O2 were needle-like microrods and the samples synthesized under the condition of deficient O2 were nanorods and nanowires with very high aspect ratio. The results of XRD and Raman shifts revealed that the ZnO micro and nanostructures synthesized under different quantity of O2 were both single crystalline with the hexagonal wurtzite structure. The HRTEM images indicated that the ZnO nanowire prepared under the condition of deficient O2 was single crystalline and grown along the direction of [0 0 1]. Photoluminescence measurement was carried out and it showed that the spectra of ZnO micro and nanostructures prepared under different quantity of O2 exhibited similar emission features. In addition, the growth mechanism of ZnO micro and nanostructures was preliminarily discussed.  相似文献   

14.
The well-like ZnO nanostructures were obtained by chemical vapor deposition method. The uniform and dense ZnO slim nano-columns were grown along the circle to form a microwell. The growth mechanisms, such as 1D linear, 2D screw dislocation and step growth are discussed. These observations provide some insight into the growth kinetics in vapor-solid growth process. The fabrication of ZnO microwell morphology provided a direct experimental evidence for explaining the 1D growth mechanism based on the axial screw dislocation. Photoluminescence (PL) microscopy showed the surface-related optical properties. The green light emission enhancement revealed that the ZnO microwells have waveguide properties. The abnormal enhancement of integrated PL intensity of deep-level emission with temperature increase showed abundant surface state existence.  相似文献   

15.
S Bhushan  M Saleem  S Chandra 《Pramana》1978,10(1):1-10
A number of ZnO : Er and ZnO : Ag, Er electroluminors have been prepared and their photo (PL) and electroluminescent (EL) properties investigated. While the addition of Ag slightly shifts the PL spectra towards longer wavelength side, the EL spectra not only shift but consist of some new transitions. In ZnO : Er electroluminors, additional transitions also exist at higher frequencies of excitations. Brightness waves for this system consist of two secondary peaks during each half cycle of exciting field. Temperature dependence shows two broad peaks. While voltage dependence of ZnO : Er satisfies the relationB=B 0 exp(−b/V 1/2), the relationB=B 0 V exp(−b/V 1/2) is found to be suitable for ZnO : Ag, Er electroluminor. Possible mechanisms for these phenomena have been proposed. A preliminary account of this work was presented at the International Symposium on Solid State Physics held at the Indian Association for the Cultivation of Science, Calcutta in January 1977.  相似文献   

16.
This paper reports the deposition of ZnO nanoparticles with controlled sizes and different particle densities and their structural, composition and optical properties. They were deposited by means of a DC magnetron based vacuum nanoparticle source onto different substrates (GaAs, Si and Ti/SiO2/Si). We believe that this is the first time that such nanoparticles have been produced using this unique technique. Zinc was used as sputtering target to produce zinc nanoparticles which were oxidized in-line using molecular oxygen. The structural properties and chemistry of the ZnO were studied by transmission electron microscopy. An average particle size of 6(±2) nm was produced with uniform size distribution. The particle density was controlled using a quartz crystal monitor. Surface densities of 2.3 × 1011/cm2, 1.1 × 1013/cm2 and 3.9 × 1013/cm2 were measured for three different deposition runs. The ZnO particles were found to be single crystalline having hexagonal structure. Photoluminescence measurements of all samples were performed at room temperature using a cw He-Cd laser at 325 nm excitation. The UV emission around 375 nm at room temperature is due to excitonic recombination and the broad emission centered at 520 nm may be attributed to intrinsic point defects such as oxygen interstitials.  相似文献   

17.
Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.  相似文献   

18.
ZnO and ZnMgO nanostructures were synthesized on Si (1 0 0) substrates with the assistance of a gold catalyst, using a thermal evaporation method with a ZnO/ZnMgO compound as the source material. The substrates were placed in different temperature zones. ZnO nanostructures with different morphologies and different compounds were obtained at different substrate temperatures. Nanostructures with nanorods and nanosheets morphologies formed in the low and high temperature zones, respectively. The nanorods grown in the low temperature zone had two phases, hexagonal and cubic. Energy dispersive X-ray (EDX) results showed that the nanorods with a cubic shape contained more Mg in comparison to the nanowires with a hexagonal shape. We found that the substrate temperature and the gold catalyst were two key factors for the doping of Mg and the formation of nanostructures with different morphologies. Room temperature photoluminescence spectroscopy showed a blue-shift for the nanostructures with the nanorods morphology. This shift could be attributed to Mg effects that were detected in the nanorods.  相似文献   

19.
ZnO nanostructures have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst and at atmospheric argon pressure. The influence of the source temperature on the morphology and luminescence properties of ZnO nanostructures has been investigated. ZnO nanowires, nanoflowres and nanotetrapods have been formed upon the Si(1 0 0) substrates at different source temperatures ranging from 1100 to 1200 °C. Room temperature photoluminescence (PL) spectra showed increase green emission intensity as the source temperature was decreased and ZnO nanowires had the strongest intensity of UV emission compared with other nanostructures. In addition, the growth mechanism of the ZnO nanostructures is discussed based on the reaction conditions.  相似文献   

20.
The angular dependent photoluminescence from ZnO nanorod array was investigated. Variations in the excitation and detection angles provided to reveal a blue shift and then splitting of a near-band edge emission into two bands. It is suggested that the observed phenomenon is caused by an inhomogeneous distribution of the emission along the nanorod length. The spatially resolved cathodoluminescence measurements confirmed that indeed the emission along the length of the nanorod is inhomogeneous and the top and bottom parts of the nanorod exhibit different emission spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号