首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

2.
Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP. An erratum to this article can be found at  相似文献   

3.
We investigated the effect of surface property of polyimide substrate on the formation of pentacene thin-film by using atomic force microscopy (AFM) and X-ray reflectivity (XRR) and diffuse scattering (XDS). Two types of polymer films were prepared: (1) polyimide (PAA-PI) from poly(amic acid) (PAA) (2) polyimide hybrid (PAA-PI-H) prepared by hybridizing the PAA and soluble polyimide (PI) with a octadecyl side chain. The hybridization ratio of PI to PAA was 2/98 in wt%. The water contact angle for PAA-PI-H and PAA-PI were around 80° and 64°, respectively. Morphology of pentacene with a ropelike structure and (1 1 0) peak around 1.4 Å in qz was found when it was deposited on PAA-PI thin-film. Different pentacene morphology was observed when it was deposited on PAA-PI-H thin-film. The different morphology might be due to a 5-6 nm thick additional layer (∼0.95 ρfilm) at the interface between pentacene and PAA-PI-H thin-film caused by a long alkyl side chain introduced to the polymer main chain.  相似文献   

4.
ZnO nanostructures were prepared by thermal oxidation technique for applying as ethanol sensors and dye-sensitized solar cells. To improve sensitivity of the sensor based on ZnO nanostructures, gold doping was performed in ZnO nanostructures. Gold-doped with 0%, 5%, and 10% by weight were investigated. The improvement of sensor sensitivity toward ethanol due to gold doping was observed at entire operating temperature and ethanol concentration. The sensitivity up to 145 was obtained for 10% Au-doped ZnO sensor. This can be explained by an increase of the quantity of oxygen ion due to catalytic effect of gold. Also, it was found that oxygen ion species at the surface of the Au-doped ZnO sensor remained O2− as pure ZnO sensor. For dye-sensitized solar cell application, the dye-sensitized solar cell structure based on ZnO as a photoelectrode was FTO/ZnO/Eosin-Y/electrolyte/Pt counter electrode. ZnO with different morphologies of nanobelt, nano-tetrapod, and powder were investigated. It was found that DSSCs with ZnO powder showed higher photocurrent, photovoltage and overall energy conversion efficiencies than that of ZnO nanobelt and ZnO nano-tetrapod. The best results of DSSCs were the short circuit current (Jsc) of 1.25 mA/cm2, the open circuit voltage (Voc) of 0.45 V, the fill factor (FF) of 0.65 and the overall energy conversion efficiency (η) of 0.68%.  相似文献   

5.
Exfoliated graphite/ZnO composites (EG/ZnO) were prepared by impregnating expandable graphite with Zn(OH)2, abruptly expanding at 700 °C for 40 s, and heating at 500 °C for 3 h. The composites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), nitrogen adsorption and mercury porosimetry. The sorption capacity of the composites for spilled crude oil was measured and under UV irradiation the decomposition of the absorbed crude oil was investigated. The results showed that the composites provided with the adsorption and photocatalysis capacity for crude oil at the same time. The sorption capacity of the composites decreased gradually on increasing the ZnO content of the composites. Moreover, the decomposition ratio of the absorbed crude oil increased on increasing the ZnO content or decreasing the weight ratio of crude oil to composites.  相似文献   

6.
This paper investigated the application of ZnO nanowires (ZnO NW) to enhance the interfacial strength of glass/epoxy composites. ZnO NW were grown on glass fibers by hydrothermal method, tensile properties of bare and ZnO NW coated fibers were measured by single fiber tensile testing, wettability of fiber with resin was studied by contact angle measurements and finally the interfacial strength and mechanisms were determined by single fiber fragmentation testing of glass/epoxy composites. The surface coverage of ZnO NW on glass fibers was fairly uniform without formation of major clusters. The coating of ZnO NW slightly reduced the tensile strength and improved the tensile modulus of fibers. Wettability tests showed reduction in contact angles for ZnO NW coated fibers because of enhanced wetting and infiltration of epoxy resin into nanowires. In fragmentation testing of microcomposites, smaller and concentrated interfacial debonding zones for ZnO NW coated fibers indicated good stress transfer and strong interfacial adhesion. A new form of crossed and closely spaced stress patterns were observed for nanowires of high aspect ratios. The interfacial strength of ZnO NW coated fibers increased by at least 109% and by 430% on average, which was attributed to the increased surface area and mechanical interlocking provided by ZnO NW.  相似文献   

7.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

8.
孙伟峰  王暄 《物理学报》2013,62(18):186202-186202
通过分子动力学模拟对聚酰亚胺/铜纳米颗粒复合物的形态结构、 热力学性质、力学特性进行计算, 分析其随模拟温度和纳米颗粒尺寸的变化规律. 模拟结果表明, 聚酰亚胺/铜纳米颗粒复合物为各向同性的无定形态结构, 铜纳米颗粒与聚酰亚胺基体之间通过较强的范德华作用结合在一起使结构更加稳定, 铜纳米颗粒表面多个原子层呈现无定形状态, 在铜颗粒和聚酰亚胺基体之间形成界面层, 界面区域随颗粒尺寸和温度的增加分别减小和增加. 聚酰亚胺/铜纳米颗粒复合物的等容热容随着颗粒尺寸增大而明显增高, 随温度变化比聚酰亚胺体系更为缓慢, 在较低温度下较小颗粒尺寸复合物的热容比聚酰亚胺体系更低. 聚酰亚胺/铜纳米颗粒复合物的热压力系数随颗粒尺寸增加而显著增大, 比聚酰亚胺体系的热压力系数更小, 且随温度升高而减小的程度要小得多. 聚酰亚胺/铜纳米颗粒复合物的热力学性质表现出明显的尺度效应, 温度稳定性明显高于聚酰亚胺体系. 聚酰亚胺/铜纳米颗粒复合物的力学特性表现出各向同性材料的弹性常数张量, 具有比聚酰亚胺体系更低的杨氏模量和泊松比, 随温度升高分别减小和增大, 与聚酰亚胺体系随温度的变化趋势相反, 且杨氏模量的温度稳定性显著提高, 同时泊松比随纳米颗粒尺寸增大而减小, 具有明显的尺度效应. 加入铜纳米颗粒形成复合物可获得与聚酰亚胺体系显著不同的力学新特性. 关键词: 分子动力学模拟 聚合物纳米复合物 聚酰亚胺 纳米颗粒  相似文献   

9.
ZnO buffer layers were deposited on n-Si (1 0 0) substrate by rf magnetron sputtering at a lower power of 40 W. Then Ag-doped ZnO (SZO) films were deposited on buffered and non-buffered Si at a higher sputtering power of 100 W. The effects of buffer layer on the structural, electrical and optical properties of SZO films were investigated. The three-dimensional island growth process of ZnO buffer layer was discussed. The energy band diagram of p-SZO/n-Si heterojunction was constructed based on Anderson's model. Results show the ZnO buffer layer leads to better properties of SZO film, including larger grain size, smoother surface, higher carrier mobility, better rectifying behavior, lower interface state density, and weaker deep-level emission. It is because the ZnO buffer layer effectively relaxes the partial stress induced by the large lattice mismatch between SZO and Si.  相似文献   

10.
ZnO films with different morphologies were deposited on the ITO-coated glass substrate from zinc nitrate aqueous solution at 65 °C by a seed-layer assisted electrochemical deposition route. The seed layers were pre-deposited galvanostatically at different current densities (isl) ranging from −1.30 to −3.0 mA/cm2, and the subsequent ZnO films had been done using the potentiostatic technique at the cathode potential of −1.0 V. Densities of nucleation centers in the seed layers varied with increasing the current density, and the ZnO films on them showed variable morphologies and optical properties. The uniform and compact nanocrystalline ZnO film with (0 0 2) preferential orientation was obtained on seed layer that was deposited under the current density (isl) of −1.68 mA/cm2, which exhibited good optical performances.  相似文献   

11.
ZnO thin films, as polymer protection layers against ultraviolet radiation, were deposited on polyimide foil substrates using cathodic vacuum arc deposition technique. X-ray diffraction results showed that all the samples had (0 0 2) preferred orientation and the FWHM decreased as the position angle decreased. A fragmentation test was employed to investigate the influence of substrate position angle on the adhesion of ZnO thin films. It was found that the intrinsic adhesion between the ZnO film and the polyimide substrate is about 60 MPa at the substrate position angle of 0°. When the position angle increases to ±60°, the value of intrinsic adhesion decreases to about 30 MPa.  相似文献   

12.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

13.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

14.
Direct patterning of ZnO thin film was realized without photoresist and dry etching by photochemical solution deposition. Photosensitive ortho-nitrobenzaldehyde was introduced into the solution precursors as a stabilizer and contributed to form a cross-linked network structure during photochemical reaction. Ag nanoparticles were prepared with uniform size distribution using trisodium citrate as a capping agent to incorporate into ZnO thin film in order to reduce the electrical resistance of the film. The optical and electrical properties of ZnO film with or without Ag nanoparticles after anneal at various temperatures were investigated. The reduction in transmittance with the increase in anneal temperature was observed and also the increase in the electrical resistance was found. The increase in the surface roughness of ZnO film and the decrease of surface oxygen deficiencies were mainly responsible for the decrease in transmittance and the increase in electrical resistance, respectively.  相似文献   

15.
Polydispersed ZnO nanoparticles (ZnO1000 and ZnO600) with two different windows of particle size distributions (∼120 and 30 nm) were synthesized using citrate gel route and different annealing treatments (1000 and 600 °C, respectively). Photocatalytic efficiency of these samples was compared with TiO2 in its commercial form-P25, on two dyes, Methylene blue (MB) and Methyl orange (MO). The X-ray diffraction data showed wrutzite ZnO and anatase and rutile phases of P25. UV-visible absorbance spectra of ZnO1000 showed broad absorption range from UV-to-visible (from 382 to 700 nm), as against sharp absorption peaks in UV range for both ZnO600 and P25. The microstructural morphology as seen through scanning electron micrographs showed ZnO1000 with tetrapod-like structures while the ZnO600 showed almost spherical morphologies. Upon subjecting these catalysts to dye solutions in sunlight it was found that both the dyes were completely decolorised within 20 min by ZnO1000, as against partial decolorisation by ZnO600 and P25 ( 53% and 78% for MO and 77% and 88% for MB samples). The effect of catalyst loading (from 125 mg to 1 g) on decolorisation showed that ZnO1000 had good efficiency for all concentrations which was followed by P25 and then by ZnO600. Small perturbations are attributed to the competition between sunlight scattering-induced, reduced irradiation field and the exposed surface area offered by catalyst, which work as active sites for decolorisation. The reusability of the catalysts when studied on fresh dye samples (4 trials), the decolorisation efficiency decreased merely from 99.2% to 99.12% for ZnO1000 as compared to ZnO600 (53.3% to 19.94%) and P25 (78.3% to 31.42%), indicating the efficient reusability of ZnO1000. The effective half life of the catalysts, in terms of number of reuses, were calculated and found to be ∼3 for both ZnO600 and P25 and was >3000 for ZnO1000, which justifies its extremely high reuse. The byproduct analysis (compared with standards prescribed by World Health Organisation (WHO) and Central Pollution Control Board of India (CPCB)) showed cleavage of the chromophore and of other bonds with opening of benzene rings, indicating degradation of the dyes in concurrence with decolorisation, in the stipulated time. Further, cytotoxicity studies performed on SiHa cell lines showed non-toxicity of the byproducts with ZnO1000 as compared to ZnO600 and P25.  相似文献   

16.
The current study investigates the performance of dye-sensitized solar cells (DSSCs) based on Al-doped and undoped ZnO nanorod arrays synthesized by a simple hydrothermal method. Current density-voltage (J-V) characterizations indicate that Al-doping in ZnO crystal structure can significantly improve current densities and the energy conversion efficiency (η) of ZnO nanorod-based DSSCs. The maximum η, 1.34%, was achieved in DSSC when Al-doped ZnO nanorod arrays were grown in 0.04 M zinc acetate dihydrate solution with 5 mM aluminum nitrate nonahydrate. This result represents a large increase of η in Al-doped ZnO nanorod-based DSSCs as compared to undoped (0.05%). The improved DSSC photovoltaic performance can be attributed to two main factors: (1) increased light harvesting efficiency due to a large amount of N719 adsorbed on the large surface area of Al-doped ZnO nanorod arrays, and (2) increased electrical conductivity due to A13+ ion doped into the ZnO lattice at the divalent Zn2+ site, allowing electrons to move easily into the Al-doped ZnO conduction band.  相似文献   

17.
ZnO film is attractive for high frequency surface acoustic wave device application when it is coupled with diamond. In order to get good performance and reduce insertion loss of the device, it demands the ZnO film possessing high electrical resistivity and piezoelectric coefficient d33. Doping ZnO film with some elements may be a desirable method. In this paper, the ZnO films undoped and doped with Cu, Ni, Co and Fe, respectively (doping concentration is 2.0 at.%) are prepared by magnetron sputtering. The effect of different dopants on the microstructure, piezoelectric coefficient d33, and electrical resistivity of the film are investigated. The results indicate that Cu dopant can enhance the c-axis orientation and piezoelectric coefficient d33, the Cu and Ni dopant can increase electrical resistivity of the ZnO film up to 109 Ω cm. It is promising to fabricate the ZnO films doped with Cu for SAW device applications.  相似文献   

18.
Kai DU&#  &#  &#  &#  Rong-hui WEI&#  &#  &#  &#  &#  Qing-dong CHEN&#  &#  &#  &#  &#  Jing-han YOU&#  &#  &#  &#  &#  Hai-bin YANG&#  &#  &#  &#  &# 《Frontiers of Physics》2009,4(4):505
Carbon fiber/ZnO was prepared by surface modification precipitation in aqueous solution. Corresponding nucleation and crystal growth model was proposed for this structure. The effects of annealing temperature on the structure and absorptive properties of the composites were investigated. Results showed that obtained ZnO shell was ca. 200nm on the surface of carbon fiber. The ZnO coating can protect the CFs from oxidation at a relatively high temperature. Energy bandgap calculated from the absorptive spectra was about 3.30eV.  相似文献   

19.
In this work, ZnO thin films were prepared by sol-gel method and the effect of aging time of ZnO sol on the structural and optical properties of the films was studied. The structural characteristics of the samples were analyzed by an atomic force microscope and an X-ray diffractometer. The optical properties were studied by a UV-vis spectrophotometer and a fluorophotometer. The results show that the ZnO thin film prepared by the as-synthesized ZnO sol had relatively poor crystalline quality, low optical transmittance in the visible range and relatively weak ultraviolet emission performance. After the as-synthesized ZnO sol was aged for 24 h, the degree of the preferred crystal orientation along the c-axis of the ZnO thin film prepared by this aged sol was improved. At the same time, this film had a very smooth surface with uniform grains and both its visible range transmittance and ultraviolet emission intensity were obviously increased. These results suggest that appropriate aging of ZnO sol is very important for the improvement of structural and optical quality of ZnO thin films derived from sol-gel method.  相似文献   

20.
This paper presents an investigation on the synthesis and characterization of ZnO-Ag core-shell nanocomposites. ZnO nanorods were employed as core material for Ag seeds, and subsequent nucleation and growth of reduced Ag by formaldehyde formed the ZnO-Ag core-shell nanocomposites. The ZnO-Ag nanocomposites were annealed at different temperature to improve the crystallinity and binding strength of Ag nanoparticles. The morphology, microstructure and optical properties of the ZnO-Ag core-shell nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, ultraviolet-visible (UV-vis) absorption and photoluminescence measurement. It was demonstrated that very small face-center-cubic Ag nanoparticles were coated on the surface of ZnO nanorods. The ultraviolet absorption and surface plasmon absorption band of ZnO-Ag core-shell nanocomposites exhibited some redshifts relative to pure ZnO nanorods and monometallic Ag nanoparticles. The coating of Ag nanocrystals onto the ZnO nanorods completely quenched the photoluminescence. These observations reflected the strong interfacial interaction between ZnO nanorods and Ag nanoparticles. The effect of Ag coating thickness on the morphology and optical properties of ZnO-Ag core-shell nanocomposites was also investigated. Moreover, the growth mechanism of ZnO-Ag core-shell nanocomposites was also proposed and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号