共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment. 相似文献
2.
Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO2 supported MgCl2/TiCl4 and TiCl4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl2 is not present while a significant amount of the Ti atoms is reduced to the Ti3+ state. 相似文献
3.
We demonstrate a kinetically-driven patterning scheme to selectively position arrays of Ge or Si nanoparticles within lithographically defined HfO2 windows. The surface reactions enabling patterning are revealed through temperature programmed desorption experiments and selectivity of the deposition is verified by X-ray photoelectron spectroscopy and scanning electron microscopy. Patterning is possible by exploiting the different reactivity of Ge and Si on HfO2 and SiO2 surfaces and employing a sacrificial SiO2 mask on which adatoms etch the SiO2 surface and do not accumulate to form nanocrystals. 相似文献
4.
High-k gate dielectric HfO2 thin films have been deposited on Si(1 0 0) by using plasma oxidation of sputtered metallic Hf thin films. The optical and electrical properties in relation to postdeposition annealing temperatures are investigated by spectroscopic ellipsometry (SE) and capacitance-voltage (C-V) characteristics in detail. X-ray diffraction (XRD) measurement shows that the as-deposited HfO2 films are basically amorphous. Based on a parameterized Tauc-Lorentz dispersion mode, excellent agreement has been found between the experimental and the simulated spectra, and the optical constants of the as-deposited and annealed films related to the annealing temperature are systematically extracted. Increases in the refractive index n and extinction coefficient k, with increasing annealing temperature are observed due to the formation of more closely packed thin films and the enhancement of scattering effect in the targeted HfO2 film. Change of the complex dielectric function and reduction of optical band gap with an increase in annealing temperature are discussed. The extracted direct band gap related to the structure varies from 5.77, 5.65, and 5.56 eV for the as-deposited and annealed thin films at 700 and 800 °C, respectively. It has been found from the C-V measurement the decrease of accumulation capacitance values upon annealing, which can be contributed to the growth of the interfacial layer with lower dielectric constant upon postannealing. The flat-band voltage shifts negatively due to positive charge generated during postannealing. 相似文献
5.
Influence of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition 下载免费PDF全文
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which is in agreement with the varition of flat band (VFB) voltage. 相似文献
6.
Scanning tunnelling microscopy and X-ray Photoelectron Spectroscopy were conducted on magnetron sputtered WO3 thin films, following a sequence of ultra high vacuum anneals from 100 °C to 900 °C. Annealing from 100 °C to 400 °C induced an upward surface band bending of about 0.3 eV, attributed to the oxygen migration from the bulk to the surface, but no changes in the surface topography. Chemical changes occurred from 600 °C to 800 °C, associated with the formation of secondary oxide species. STM imaging showed that the film surface consists of amorphous particles 35 nm in size up to 600 °C, while higher temperatures resulted in an increase in particle size. Crystallisation of the nanoparticles started to occur after annealing at 600 °C. The implications in terms of gas sensing are discussed. 相似文献
7.
The growth of ultrathin ZrO2 films on Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) has been studied with core level photoelectron spectroscopy and X-ray absorption spectroscopy. The films were deposited sequentially by chemical vapor deposition in ultra-high vacuum using zirconium tetra-tert-butoxide as precursor. Deposition of a > 50 Å thick film leads in both cases to tetragonal ZrO2 (t-ZrO2), whereas significant differences are found for thinner films. On Si(1 1 1)-(7 × 7) the local structure of t-ZrO2 is not observed until a film thickness of 51 Å is reached. On Si(1 0 0)-(2 × 1) the local geometric structure of t-ZrO2 is formed already at a film thickness of 11 Å. The higher tendency for the formation of t-ZrO2 on Si(1 0 0) is discussed in terms of Zr-O valence electron matching to the number of dangling bonds per surface Si atom. The Zr-O hybridization within the ZrO2 unit depends furthermore on the chemical composition of the surrounding. The precursor t-butoxy ligands undergo efficient C-O scission on Si(1 0 0), leaving carbonaceous fragments embedded in the interfacial layer. In contrast, after small deposits on Si(1 1 1) stable t-butoxy groups are found. These are consumed upon further deposition. Stable methyl and, possibly, also hydroxyl groups are found on both surfaces within a wide film thickness range. 相似文献
8.
Samples of Al2Au and AlAu4 were examined using XPS after controlled oxidation in air. AlAu4 showed a strong tendency to oxidize compared to Al2Au. The binding energies (b.e.) of Au 4f and Al 2p XPS emissions were determined for both intermetallics. Heavy oxidation of AlAu4 resulted in a unique Au 4f emission near the surface which was attributed to Au dissolved in aluminum oxide. 相似文献
9.
M. Ramzan A.M. Rana E. Ahmed A.S. Bhatti M. Hafeez A. Ali M.Y. Nadeem 《Current Applied Physics》2014,14(12):1854-1860
A three-layer system of dielectric/metal/dielectric (D/M/D) has been prepared on Marienfeld commercial glass substrates with Metal = Al, and Dielectric = HfO2 for energy efficient windows applications. Subsequently, HfO2/Al/HfO2 multilayers have been deposited with 10 nm each HfO2 layer and 5 nm thick Al layer using electron beam evaporation. The microstructural characteristics of D/M/D thin films have been investigated using X-ray diffraction (XRD) and atomic force microscopy (AFM). Present results indicate the formation of HfO2 weak polycrystals embedded in the disordered lattice. AFM data reveals quite a smooth surface involving a structure of slightly elongated grains with almost Gaussian size distribution with mean grain size in the range from 7 to 23 nm. Regarding optical properties, maximum transmittance of the D/M/D structure is noticed to occur in the UV-region, whereas reflectance rises to ∼60% in the visible to near infrared (NIR)-regions. To optimize the performance of these D/M/D devices, computer calculations have been performed by varying either the thickness of both HfO2 layers and/or thickness of metallic Al layer. A satisfactory agreement between theoretical and experimental spectra is noticed. Such D/M/D structures can be useful in heat mirror applications involving energy efficient windows etc. 相似文献
10.
An original approach based on X-ray photoelectron spectroscopy (XPS) is proposed to study the influence of the surrounding humidity on the hydrolysis-condensation reactions of five titanium alkoxides in thin films. More precisely, the influence of the nature of the ligands (propoxide, butoxide, isopropoxide, phenoxide, and 9H-carbazole-9-yl-ethyl-oxy) on the reaction rate was evidenced. The reaction advancement was evaluated by comparing XPS chemical compositions to theoretical compositions calculated for all the possible rates. XPS chemical environment information allowed validating the reliability of this approach through the evaluation of the condensation state. In both approaches, the influence of the steric hindrance on the reactivity of titanium alkoxides was highlighted to be similar to what has been previously observed in solution. Theses results corroborate the validity of our XPS approach to determine titanium alkoxide hydrolysis-condensation reactions in the specific application of thin films. 相似文献
11.
V.L. Bekenev V.V. Bozhko O.V. Parasyuk G.E. Davydyuk L.V. Bulatetska A.O. Fedorchuk I.V. Kityk O.Y. Khyzhun 《Journal of Electron Spectroscopy and Related Phenomena》2012
X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals grown, respectively, by the Bridgman method and the method of direct crystallization have been measured in the present work. The X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (0 0 1) surfaces of AgCd2GaS4 and AgCd2GaSe4 single crystals. Electronic structure of AgCd2GaS4 has been calculated employing the full potential linearized augmented plane wave method. For the AgCd2GaS4 compound, the X-ray emission bands representing the energy distribution of the valence Ag d-, Cd d-, Ga p- and S p-like states were recorded and compared on a common energy scale with the XPS valence-band spectrum. The theoretical and experimental data regarding the occupation of the valence band of AgCd2GaS4 were found to be in excellent agreement to each other. Second harmonic generation (SHG) efficiency of AgCd2GaS4 by using the 320 ns CO laser at 5.5 μm has been recorded within the temperature range 80–300 K. Substantial increase of the photoinduced SHG which in turn is substantially dependent on the temperature has been detected for the AgCd2GaS4 compound. 相似文献
12.
A thin and homogeneous alumina film was prepared by deposition and oxidation of aluminum on a refractory Re(0 0 0 1) substrate under ultrahigh vacuum conditions. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron-energy-loss spectroscopy (HREELS) demonstrate that the oxide film is long-range ordered, essentially stoichiometric and free from surface hydroxyl groups. The chemisorption and thermal decomposition of Mo(CO)6 on the Al2O3 film were investigated by means of XPS and UPS. Mo(CO)6 adsorbs molecularly on the oxide film at 100 K; however, thermal decomposition of the adsorbate occurs upon annealing at high temperatures. Consequently the metallic molybdenum clusters are deposited on the thin alumina film via complete decarbonylation of Mo(CO)6. 相似文献
13.
This paper deals with a detailed study of the growth stages of CdS thin films on ITO/glass substrates by chemical bath deposition (CBD). The chemical and morphological characterization was done through X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and atomic force microscopy (AFM) techniques. On the other hand, optical transmission and X-ray diffraction (XRD) measurements were performed in order to study the optical and structural properties of the films. The time, the chemistry, and morphology of the different stages that form the growth process by CBD were identified through these results. Furthermore, clear evidence was obtained of the formation of Cd(OH)2 as the first chemical species adhered to the substrate surface which forms the first nucleation centers for a good CdS formation and growth. On the other hand, the ITO coating caused growth stages to occur earlier than in just glass substrates, with which we can obtain a determined thickness in a shorter deposition time. We were able to prove that CBD is a good technique for the manufacture of thin films of semiconductor materials, since the CdS film does not have any impurities. Completely formed films were transparent, uniform, with good adherence to the substrate, of a polycrystalline nature with a hexagonal structure. These results indicate that films obtained by CBD are good candidates to be applied in different optoelectronic devices. 相似文献
14.
K. Prabhakaran Y. WatanabeK.G. Nath Y. HommaT. Ogino K.V.P.M. Shafi A. Ulman 《Surface science》2003,545(3):191-198
In this paper, we report on a comparative study of the effect of Fe2O3 nanoparticles (NP), introduced onto a thin oxide layer formed on silicon and germanium surfaces, on the thermal decomposition pathway of the individual oxide layers. On both the surfaces, NP of Fe2O3 undergo a reduction reaction through a bonding partner change reaction, where the oxygen atoms change from Fe to Si or Ge. On both the surfaces, annealing results in the conversion of the suboxide-like species to dioxide-like species (SiOx to SiO2 and GeOx to GeO2 respectively for Si and Ge surfaces), until the oxide layer decomposes following the desorption of the respective monoxide species (SiO and GeO). Both the Si and Ge corelevels show a larger chemical shift (4.1 and 3.51 eV in Si 2p and Ge 3d corelevels, respectively) for the as-prepared oxide samples with the NP, at room temperature compared to that without the NP (3.7 and 3.4 eV), indicating a catalytic enhancement of the dioxide formation. Selective formation of silicon oxides leads to encapsulation of the nanoparticles and acts like a protective layer, preventing the oxidation of Fe. 相似文献
15.
Laser ablation of Upilex-S polyimide films 80 μm thick was performed in air using a pulse TEA CO2 laser with wavelength 9.3 μm. A halo surrounding the hole was observed, which is covered with sub-micro particles. Pieces of ablation products protrude from the ablated surface, leading to considerable roughness of the ablated area. Chemical and structural changes of Upilex-S polyimide film surface irradiated by the pulse TEA CO2 laser in air were analyzed by X-ray photoelectron spectroscopy (XPS). Relative C content in the ablated area was found to be higher, whilst both O and N contents were lower than in the untreated area. This means that TEA CO2 laser ablation released both the O and N atoms. Also, the peak areas corresponding with carbonyl group (C=O) in the imide system were reduced much more and a new component at 287.0 eV assigned to the amide structure (N---C=O) was detected after laser ablation. These suggest that the pyrolysis of the Upilex-S polyimide was the decomposition of the imide ring between the nitrogen/aromatic carbon atom and carbonyl carbon atom. In addition, another new component arising from >C=O groups was also detected for higher fluence (7.83 J/cm2), and its peak areas is very small. This result indicates that the slight oxidation may take place with higher fluence during laser ablation in air. Based on above-mentioned experimental results, a possible thermally-induced decomposition path of Upilex-S polyimide ablated by TEA CO2 laser is presented. 相似文献
16.
High-k HfOxNy thin films with different nitrogen-incorporation content have been fabricated on Si (1 0 0) substrate by means of radio-frequency reactive sputtering method. Analyses from X-ray diffraction (XRD) and atomic force microscopic have indicated that the increase of the crystallization temperature of HfO2 thin films and the decrease of the roughness root-mean-square value of HfO2 thin films due to the incorporation of nitrogen. Based on a parameterized Tauc-Lorentz (TL) dispersion model, the optical properties of the HfOxNy thin films related to different nitrogen-incorporation content are systematically investigated by spectroscopic ellipsometer. Increase in the refractive index and the extinction coefficient and reduction in band gap with increase of nitrogen-incorporation content are discussed in detail. 相似文献
17.
B. AguirreR.S. Vemuri D. ZubiaM.H. Engelhard V. ShutthananadanK. Kamala Bharathi C.V. Ramana 《Applied Surface Science》2011,257(6):2197-2202
Hafnium oxide (HfO2) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(1 0 0) substrates under varying growth temperature (Ts). HfO2 ceramic target has been employed for sputtering while varying the Ts from room temperature to 500 °C during deposition. The effect of Ts on the growth and microstructure of deposited HfO2 films has been studied using grazing incidence X-ray diffraction (GIXRD), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive X-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO2 films. Structural characterization indicates that the HfO2 films grown at Ts < 200 °C are amorphous while films grown at Ts > 200 °C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts = 200 °C. Nanocrystalline HfO2 films crystallized in a monoclinic structure with a (−1 1 1) orientation. An interface layer (IL) formation occurs due to reaction at the HfO2-Si interface for HfO2 films deposited at Ts > 200 °C. The thickness of IL increases with increasing Ts. EDS at the HfO2-Si cross-section indicate that the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts. The current-voltage characteristics indicate that the leakage current increases significantly with increasing Ts due to increased ILs. 相似文献
18.
Shreyas S. Pitale 《Applied Surface Science》2011,257(8):3298-3306
Luminescence characteristics and surface chemical changes of nanocrystalline Mn2+ doped ZnAl2O4 powder phosphors are presented. Stable green cathodoluminescence (CL) or photoluminescence (PL) with a maximum at ∼512 nm was observed when the powders were irradiated with a beam of high energy electrons or a monochromatic xenon lamp at room temperature. This green emission can be attributed to the 4T1 → 6A1 transitions of the Mn2+ ion. Deconvoluted CL spectra resulted in two additional emission peaks at 539 and 573 nm that may be attributed to vibronic sideband and Mn4+ emission, respectively. The luminescence decay of the Mn2+ 512 nm emission under 457 nm excitation is single exponential with a lifetime of 5.20 ± 0.11 ms. Chemical changes on the surface of the ZnAl2O4:Mn2+ phosphor during prolonged electron beam exposure were monitored using Auger electron spectroscopy. The X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the possible compounds formed on the surface as a result of the prolonged electron beam exposure. The XPS data suggest that the thermodynamically stable Al2O3 layer was formed on the surface and is possibly contributing to the CL stability of ZnAl2O4:Mn phosphor. 相似文献
19.
In this investigation ZnFe2O4 thin films were fabricated by RF magnetron sputtering and the magnetic behavior was examined under the influence of the growth conditions in three types of atmospheres, using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and vibrating sample magnetometry (VSM). XPS revealed that films under an Ar/O2 ratio 1:2 and 2:1 have Fe/Zn atomic ratios similar to the Fe/Zn stoichiometric composition; while the films deposited in pure Ar atmosphere, showed a formation of Fe ions (Fe0) reduced by Ar ion sputtering. VSM revealed an enhancing of the saturation magnetization for the ZFO in thin films unlike the samples in bulk, suggesting that Fe ions migrate to A sites and the interaction JAB dominates the magnetic properties instead of JBB interaction. 相似文献
20.
B. Asenjo C. Guillén E. Saucedo D. Lincot M.T. Gutiérrez 《Journal of Physics and Chemistry of Solids》2010,71(12):1629-1633
In2S3 films have been chemically deposited on ITO coated glass substrates by chemical bath deposition, using different deposition times and precursor concentrations. The bilayers are intended for photovoltaic applications. Different characterization methods have been employed: optical properties of the films were investigated from transmittance measurements, structural properties by XRD and micro-Raman, and surface morphology by SEM microscopy analysis. Also, the direct and indirect band-gaps and the surface gap states were studied with surface photovoltage spectroscopy (SPS). We proposed that electronic properties of the In2S3 samples are controlled by two features: shallow tail states and a broad band centred at 1.5 eV approximately. Their relation with the structure is discussed, suggesting that their origin is related to defects created on the S sub-lattice, and then both defects are intrinsic to the material. 相似文献