首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrathin Mo (5 nm)/MoN (5 nm) bilayer nanostructure has been studied as a diffusion barrier for Cu metallization. The Mo/MoN bilayer was prepared by magnetron sputtering and the thermal stability of this barrier is investigated after annealing the Cu/barrier/Si film stack at different temperatures in vacuum for 10 min. The failure of barrier structure is indicated by the abrupt increase in sheet resistance and the formation of Cu3Si phase proved by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). High resolution transmission electron microscopy (HRTEM) examination suggested that the ultrathin Mo/MoN barrier is stable and can prevent the diffusion of Cu at least up to 600 °C.  相似文献   

2.
We have prepared thin Zr-B films at low temperatures as a new material applicable to an extremely thin barrier against Cu diffusion in Si-ULSI metallization. The obtained Zr-B films mainly consist of the ZrB2 phase with a nanocrystalline texture on SiO2 and a fiber texture on Cu. The resistivity of the Zr-B films depends on the substrate of SiO2 or Cu. The constituent ratio of B/Zr is almost 2, though the contaminants of oxygen, nitrogen, and carbon are incorporated in the film. The nanocrystalline structure of the Zr-B film on SiO2 is stable due to annealing at temperatures up to 500 °C for 30 min. We applied the 3-nm thick Zr-B film to a diffusion barrier between Cu and SiO2, and the stable barrier properties were confirmed. We can demonstrate that the thin Zr-B film is a promising candidate for thin film application to a metallization material in Si-ULSIs.  相似文献   

3.
The properties of Ru(5 nm)/WCoCN(5 nm) stacked layers as a seedless Cu barrier system has been investigated. Its barrier properties compared to single 10 nm Ru film were investigated by sheet resistances, X-ray diffraction patterns, transmission electron microscopy, energy dispersive spectrometry spot analysis, line scans, and leakage currents. Thermal stability of the Ru(5 nm)/WCoCN(5 nm) improved by over 100 °C than that of Ru(10 nm) barrier. The results show that Ru(5 nm)/WCoCN(5 nm) can effectively block Cu diffusion up to 600 °C for 30 min. The Ru(5 nm)/WCoCN(5 nm) bilayer is a great Cu barrier candidate for seedless Cu interconnects.  相似文献   

4.
Growth and nucleation behavior of Ir films grown by atomic layer deposition (ALD) on different interfacial layers such as SiO2, surface-treated TaN, and 3-nm-thick TaN were investigated. To grow Ir thin film by ALD, (1,5-cyclooctadiene) (ethylcyclopentadienyl) iridium (Ir(EtCp)(COD)) and oxygen were employed as the metalorganic precursor and reactant, respectively. To obtain optimal deposition conditions, the deposition temperature was varied from 240 to 420 °C and the number of deposition cycles was changed from 150 to 300. The Ir film grown on the 3-nm-thick TaN surface showed the smoothest and most uniform layer for all the deposition cycles, whereas poor nucleation and three-dimensional island-type growth of the Ir layer were observed on Si, SiO2, and surface-treated TaN after fewer number of deposition cycles. The uniformity of the Ir film layer was maintained for all the different substrates up to 300 deposition cycles. Therefore we suggest that the growth behavior of the Ir layer on different interface layer is related to the chemical bonding pattern of the substrate film or interface layer, resulting in better understand the growth mechanism of Ir layer as a copper diffusion barrier. The ALD-grown Ir films show the preferential direction of (1 1 1) for all the reflections, which indicates the absence of IrO2 in metallic Ir.  相似文献   

5.
In this paper, we report that the phase transformation of Ni-B, Ni-P diffusion barriers deposited electrolessly on Cu, for the reason that the Ni-P layer is a more effective diffusion barrier than the Ni-B layer. The Ni3B crystallized was decomposed to Ni and B2O3 above 400 °C and the Ni3P crystallized was decomposed to Ni and P2O5 above 600 °C respectively in Ar atmosphere. Also, the Ni3B was decomposed to Ni and free B above 400 °C and the Ni3P was decomposed to Ni and free P above 600 °C respectively in H2 atmosphere. The decomposed Ni formed a solid solution with Cu. The Cu diffusion occurred above 400 °C for Ni-B layer and above 600 °C for Ni-P layer, respectively. Because the decomposition temperature of Ni-P layer is about 200 °C higher than that of Ni-B layer, the Ni-P layer is a more effective barrier for Cu than the Ni-B layer.  相似文献   

6.
A structure of Cu/ITO(10 nm)/Si was first formed and then annealed at various temperatures for 5 min in a rapid thermal annealing furnace under 10−2 Torr pressure. In Cu/ITO(10 nm)/Si structure, the ITO(10 nm) film was coated on Si substrate by sputtering process and the Cu film was deposited on ITO film by electroplating technique. The various Cu/ITO(10 nm)/Si samples were characterized by a four-point probe, a scanning electron microscope, an X-ray diffractometer, and a transmission electron microscope. The results showed that when the annealing temperature increases near 600 °C the interface between Cu and ITO becomes unstable, and the Cu3Si particles begin to form; and when the annealing temperature increases to 650 °C, a good many of Cu3Si particles about 1 μm in size form and the sheet resistance of Cu/ITO(10 nm)/Si structure largely increases.  相似文献   

7.
Barrier capability of Zr-Si diffusion barriers in Cu metallization has been investigated. Amorphous Zr-Si diffusion barriers were deposited on the Si substrates by RF reactive magnetron sputtering under various substrate temperatures. An increase in substrate temperature results in a slightly decreased deposition rate together with an increase in mass density. An increase in substrate temperature also results in grain growth as deduced from field emission scanning electron microscopy (FE-SEM) micrographs. X-ray diffraction (XRD) spectra and Auger electron spectroscopy (AES) depth profiles for Cu/Zr-Si(RT)/Si and Cu/Zr-Si(300 °C)/Si samples subjected to anneal at various temperatures show that the thermal stability was strongly correlated with the deposition temperature (consequently different density and chemical composition etc.) of the Zr-Si barrier layers. ZrSi(300 °C) with higher mass density make the Cu/Zr-Si(300 °C)/Si sample more stable. The appearance of Cu3Si in the Cu/Zr-Si/Si sample is attributed to the failure mechanism which may be associated with the diffusion of Cu and Si via the grain boundaries of the Zr-Si barriers.  相似文献   

8.
Ni-Ti films prepared at 10 W and 70 W by rf magnetron sputtering are investigated as the oxygen diffusion barrier layer, it is found that crystallinity of Ni-Ti film does not greatly depend on the deposition power. X-ray photoelectron spectroscopy indicates that Ni is still in the form of metallic state from the binding energies of both Ni 2p3/2 and Ni 2p1/2 spectra for the sample with 10 W prepared Ni-Ti, however, Ni is oxidized for 70 W prepared Ni-Ti film. Moreover, the (La0.5Sr0.5)CoO3/Pb(Zr0.40Ti0.60)O3/(La0.5Sr0.5)CoO3 capacitor grown on high power prepared Ni-Ti film is leaky, however, the capacitor on low power prepared Ni-Ti film possesses very promising physical properties (i.e. remnant polarization of ∼27 μC/cm2 at 5 V and maximum dielectric constant of 940). Leakage current density of the capacitor grown on low power prepared Ni-Ti film is further investigated, it meets ohmic behavior (<1.0 V) and agrees well with the space-charge-limited current theory (>1.0 V).  相似文献   

9.
本文通过分子动力学模拟研究了纳米铜团簇的自扩散性质,结果表明Nc8949铜团簇自扩散系数随温度的升高而增大,在温度为1000 K时纳米铜团簇的扩散系数随团簇半径的倒数基本呈线性增加.同时指出在常温下团簇几乎无扩散行为,而某些文献中关于常温下晶粒扩散分子动力学模拟结果是模拟体系宏观转动造成的虚假现象.?  相似文献   

10.
Ta-B-N thin films were prepared by rf-magnetron sputtering from a TaB2 target in N2/Ar reactive gas mixtures and then used as diffusion barriers between Cu and Si substrates. In order to investigate the performance of Cu/Ta-B-N/Si contact systems, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), four-point probe measurement, scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (XTEM), and Auger electron spectroscopy (AES) depth profile were used. Results of this study indicate that the barrier characteristics are significantly affected by the nitrogen content. In addition, the failure mechanism for the Cu/Ta-B-N/Si contact systems is also discussed herein.  相似文献   

11.
The saddle field fast atom beam sputtered (ABS) 50 nm thick molybdenum carbide (Mo2C) films as a diffusion barrier for copper metallization were investigated. To study the diffusion barrier properties of Mo2C films, the as-deposited and annealed samples were characterized using four probes, X-ray diffraction, field enhanced scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy and Rutherford back scattering techniques. The amorphous structure of the barrier films along with presence of carbon atoms at the molybdenum carbide-silicon interface is understood to reduce effective grain boundaries and responsible for increased thermal stability of Cu/Mo2C/Si structure. The lowest resistivity of the as-deposited molybdenum carbide barrier films was ∼29 μΩ cm. The low carbon containing molybdenum carbide was found thermally stable up to 700 °C, therefore can potentially be used as a diffusion barrier for copper metallization.  相似文献   

12.
用射频等离子增强化学气相沉积技术(RF-PECVD)制备非晶碳化硅(a-SiC:H)和不同掺氮量的碳化硅基(a-SiCNx:H)介质薄膜.采用傅里叶红外光谱(FIRT),X射线光电子谱仪(XPS),纳米压入仪(Nano IndenterA○R-XP),Agilent 4294A高精度阻抗分析仪,俄歇能谱仪(AES)和场发射高分辨透射电镜(HRTEM)表征氮掺杂对碳化硅基薄膜化学键组成、微观结构、机械性能、介电常数和阻挡铜扩散性能的影响.实验结果表明:通过控制薄膜的氮含量可实现其介电常数在38—52范围内可调.随着反应源中氨气(NH3)流量的增加,碳化硅基薄膜中Si—N和C—N化学键比例增加以及由此导致的薄膜微观结构致密化是氮掺杂显著提高碳化硅基薄膜机械性能、热稳定性和阻挡铜扩散性能的机理.  相似文献   

13.
14.
Using temperature-variable scanning tunneling microscopy, we studied the coalescence of vacancy islands on Cu(0 0 1) in ultra-high vacuum. From the temperature dependence of the relaxation of merged vacancy islands to the equilibrium shape we obtain an activation energy of the island coalescence process of 0.76 eV. From that value we deduce an activation energy for the atomic hopping coefficient of EΓh=0.89 eV. Comparing our result with previous STM data on step fluctuations with dominant diffusion along straight step segments (EΓh=0.68 eV; [M. Giesen, S. Dieluweit, J. Mol. Catal. A: Chem. 216 (2004) 263]) and step fluctuations with kink crossing (EΓh=0.9 eV; [M. Giesen-Seibert, F. Schmitz, R. Jentjens, H. Ibach, Surf. Sci. 329 (1995) 47]), we conclude that there is a large extra barrier for diffusion of atoms across kinks on Cu(0 0 1) of the order of 0.23 eV. This is the first direct experimental evidence for the existence of a large kink Ehrlich-Schwoebel barrier on Cu(0 0 1).  相似文献   

15.
Thin films of TaBx interposed between Cu and Si are examined here as diffusion barriers for Cu metallization. In order to investigate the performance of Cu/TaBx/Si contact systems, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), sheet resistance measurement, scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (XTEM), and Auger electron spectroscopy (AES) depth profile were used. Results of this study indicate that the barrier characteristics are significantly affected by the B/Ta ratio. In addition, the failure mechanism for the Cu/TaBx/Si contact systems is also discussed herein.  相似文献   

16.
The properties of W-Ge-Nthin films were investigated as a diffusion barrier material for Cu metallization. The W-Ge-Nfilms were grown by reactive sputtering on a single crystal Ge substrate. This was followed by in-situ deposition of Cu. Diffusion barrier test was performed by annealing the film stack under Ar atmosphere. Phase identification and film crystallization were determined by X-ray diffraction. The deposited W-Ge-Nfilms remained amorphous even after high temperature annealing. The Cu diffusion profile in the film was assessed by Auger electron spectroscopy and energy dispersive spectroscopy. The results indicate that Cu diffusion was minimal in W-Ge-Nfilms even at high annealing temperatures. Interface reactions and properties were analyzed by cross-section transmission electron microscopy. The results suggest that W-Ge-Nmay be a superior diffusion barrier as compared to WNx for Cu metallization. PACS 66.30.Ny; 68.35.Rh; 68.37.Lp; 68.60.Dv  相似文献   

17.
The deposition of a Cu seed layer film is investigated by supercritical fluid deposition(SCFD) using H2 as a reducing agent for Bis(2,2,6,6-tetramethyl-3,5-heptanedionato) copper in supercritical CO2(scCO2).The effects of deposition temperature,precursor,and H2 concentration are investigated to optimize Cu deposition.Continuous metallic Cu films are deposited on Ru substrates at 190℃ when a 0.002 mol/L Cu precursor is introduced with 0.75 mol/L H2.A Cu precursor concentration higher than 0.002 mol/L is found to have negative effects on the surface qualities of Cu films.For a H2 concentration above 0.56 mol/L,the root-mean-square(RMS) roughness of a Cu film decreases as the H2 concentration increases.Finally,a 20-nm thick Cu film with a smooth surface,which is required as a seed layer in advanced interconnects,is successfully deposited at a high H2 concentration(0.75 mol/L).  相似文献   

18.
Copper diffusion barrier properties of phosphorous doped Ru film are studied. Phosphorous out-diffusion to Ru from underneath phosphosilicate glass (PSG) layer results in P doped Ru film. The doped Ru film improves copper barrier properties and has excellent thermal stability. XRD graph indicates that there is no copper silicide and ruthenium silicide formations after annealing at 550 °C for 30 min in vacuum. This result is consistant with AES depth profiles which show no Cu, Ru, O and Si inter-diffusion. The phosphorous doped Ru barrier also blocks oxygen's diffusion to copper from the PSG layer. The phosphorous doped Ru film could be an alternative Cu diffusion barrier for advanced Cu interconnects.  相似文献   

19.
20.
In this work, the effect of tin-doped indium oxide (ITO) film as capping layer on the agglomeration of copper film and the appearance of copper silicide was studied. Both samples of Cu 100 nm/ITO 10 nm/Si and ITO 20 nm/Cu 100 nm/ITO 10 nm/Si were prepared by sputtering deposition. After annealing in a rapid thermal annealing (RTA) furnace at various temperatures for 5 min in vacuum, the samples were characterized by four probe measurement for sheet resistance, X-ray diffraction (XRD) analysis for phase identification, scanning electron microscopy (SEM) for surface morphology and transmission electron microscopy (TEM) for microstructure.The results show that the sample with ITO capping layer is a good diffusion barrier between copper and silicon at least up to 750 °C, which is 100 °C higher than that of the sample without ITO capping layer. The failure temperature of the sample with ITO capping layer is about 800 °C, which is 100 °C higher than that of the sample without ITO capping layer. The ITO capping layer on Cu/ITO/Si can obstacle the agglomeration of copper film and the appearance of Cu3Si phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号