首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Oxidation of Cu3Au(1 1 0) using a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident energy dependence of the O-uptake curve, the precursor-mediated dissociative adsorption occurs, where the trapped O2 molecule can migrate and dissociate at the lower activation-barrier sites, dominantly at thermal O2 exposures. Dissociative adsorption of O2 on Cu3Au(1 1 0) is as effective at the thermal O2 exposure as on Cu(1 1 0). On the other hand, at the incident energies of HOMB where the direct dissociative adsorption is dominant, it was determined that the dissociative adsorption of O2 implies a higher activation barrier and therefore less reactivity due to the Au alloying in comparison with the HOMB oxidation of Cu(1 1 0). The dissociative adsorption progresses with the Cu segregation on Cu3Au(1 1 0) similarly as on Cu3Au(1 0 0). The growth of Cu2O for 2 eV HOMB suggests that the diffusion of Cu atoms also contribute to the oxidation process through the open face, which makes the difference from Cu3Au(1 0 0).  相似文献   

2.
Lithium tetraborate (Li2B4O7) is a tissue equivalent material and single crystals of this material doped with Cu are promising for dosimetric applications. In the present study highly transparent single crystals of lithium tetraborate (Li2B4O7) doped with Cu (0.5 wt%) have been grown using the Czochralski technique. The Li2B4O7:Cu crystals were studied using photoluminescence, X-ray diffraction (XRD), UV-vis transmission, time resolved fluorescence and thermoluminescence (TL) techniques. The TL readout of Li2B4O7:Cu crystals showed two well-defined glow peaks at 402 K (peak-1) and 513 K (peak-2) for a 4 K/s heating rate. While the low temperature TL peak-1 fades completely within 24 h at room temperatures, the main dosimetric peak-2 remains the same. The TL sensitivity of the grown single crystal is found to be 3.3 times that of a conventional TL phosphor, TLD-100. The Li2B4O7:Cu crystals showed a linear TL dose-response in the range from 1 mGy to 1 kGy. The TL analysis using a variable dose method revealed first order kinetics for both the peaks. Trap depth and frequency factor for peak-1 were found to be 0.81 eV and 5.2×109 s−1, whereas for peak-2 the values were 1.7 eV and 1.7×1016 s−1, respectively.  相似文献   

3.
M. Alatalo  A. Puisto 《Surface science》2006,600(8):1574-1578
We have studied the adsorption of O2 on the Cu(1 0 0) surface using both static potential energy surface (PES) calculations and ab initio molecular dynamics. The dynamical calculations complement the PES results, revealing steering effects which could not be predicted based on the static calculations only. We study the effect of oxidation and Ag doping on O2 adsorption dynamics. The results are discussed in the light of recent molecular beam experiments.  相似文献   

4.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism.  相似文献   

5.
Lithium borate (Li2B4O7) is a low Zeff, tissue equivalent material that is commonly used for medical dosimetry using the thermoluminescence (TL) technique. Nanocrystals of lithium borate were synthesized by the combustion method for the first time in the laboratory. TL characteristics of the synthesized material were studied and compared with those of commercially available microcrystalline Li2B4O7. The optimum pre-irradiation annealing condition was found to be 300 °C for 10 min and that of post-irradiation annealing was 300 °C for 30 min. The synthesized Li2B4O7 nanophosphor has very poor sensitivity for low doses of gamma up to 101 Gy whereas from 101 to 4.5×102 Gy this phosphor exhibits a linear response and then from 4.5×102 to 103 Gy it shows supralinearity. Thermoluminescence properties of Li2B4O7 nanophosphor doped with Cu has also been investigated in this paper. It shows low fading and a linear response over a wide range of gamma radiation from 1×102 to 5×103 Gy. Therefore the synthesized lithium borate nanophosphor doped with Cu may be used for high dose measurements of gamma radiations.  相似文献   

6.
In this work, we have investigated the influence of doping agents on the luminescence properties of multiply doped Li2B4O7 and the temperature lag between TSL materials and the heating element. The results of thermoluminescence studies show that the Ag doping leads to the appearance of a new glow curve peak at 165 °C and the increasing sensitivity of Li2B4O7:Cu,Ag,P is correlated with copper and phosphate concentrations. Under the excitation at 245 nm the emission spectra show maxima at 365 and 450 nm in the ceramic, crystal and glass. The low energy shift in the latter system might be related to the local structural distortion in the glass around Cu+ ions.  相似文献   

7.
Dissociative chemisorption of O2 on Cu(1 0 0), S/Cu(1 0 0) and Ag/Cu(1 0 0) surface alloy has been investigated by Auger electron spectroscopy (AES). A strong reduction in the initial O2 chemisorption probability (S0) from 0.05 to 7.4 × 10−3 is observed already at an Ag coverage of 0.02 ML. Further Ag deposition results only in a moderate decrease in S0. Similar inhibition of O2 dissociation is observed on S/Cu(1 0 0). It is concluded that at very low Ag coverages, the reduced reactivity of Ag/Cu(1 0 0) towards O2 dissociation is primarily due to the steric blocking of the surface defects and that any electronic effects are only secondary and present only at higher Ag coverages.  相似文献   

8.
Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (1 1 1) In2O3 with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T = 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T ? 370 °C. At temperatures of 160 and 250 °C unusual “oxidizing” behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (1 1 1) In2O3 surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O2 and CO for low temperatures (T = 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O2 and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (1 1 1) In2O3 surface explains earlier revealed acceptor-like behavior of In2O3 film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.  相似文献   

9.
M. Kato  K. Ozawa  S. Otani 《Surface science》2006,600(2):448-452
The electronic structure of α-Mo2C(0 0 0 1) has been investigated by angle-resolved photoemission spectroscopy utilizing synchrotron radiation. A sharp peak is observed at 3.3 eV in normal-emission spectra. Since the peak shows no dispersion as a function of photon energy and is sensitively attenuated by oxygen adsorption, the initial state of the peak is attributed to a surface state. Resonant photoemission study shows that the state includes substantial contribution of 4d orbitals of the Mo atoms in the second layer. The emissions with constant kinetic energies of 22 and 31 eV above the Fermi level (EF) are found in normal-emission spectra, and these emissions are interpreted as originating from the Mo N1N23V and N23VV Auger transitions, respectively.  相似文献   

10.
Scanned-energy mode photoelectron diffraction (PhD), using the O 1s and V 2p photoemission signals, together with multiple-scattering simulations, have been used to investigate the structure of the V2O3(0 0 0 1) surface. The results support a strongly-relaxed half-metal termination of the bulk, similar to that found in earlier studies of Al2O3(0 0 0 1) and Cr2O3(0 0 0 1) surfaces based on low energy electron and surface X-ray diffraction methods. However, the PhD investigation fails to provide definitive evidence for the presence or absence of surface vanadyl (VO) species associated with atop O atoms on the surface layer of V atoms. Specifically, the best-fit structure does not include these vanadyl species, although an alternative model with similar relaxations but including vanadyl O atoms yields a reliability-factor within the variance of that of the best-fit structure.  相似文献   

11.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

12.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

13.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

14.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

15.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

16.
Oxygen adsorption on a C-terminated α-Mo2C(0 0 0 1) surface has been investigated with Auger electron spectroscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy utilizing synchrotron radiation. It is found that the oxygen atoms adsorb on the Mo atoms in the second layer forming a (1 × 1) orthorhombic periodicity. The oxygen adsorption induces a peculiar state around the Fermi level, which is observed at 0.4 eV in the normal-emission spectra. ARPES measurements show that the state is a partially occupied metallic state. The photoionization cross section of the state shows a maximum at the photon energy of 56 eV, which is assigned as originating from the resonance of the Mo 4d photoemission involving Mo 4p → 4d photoexcitation.  相似文献   

17.
X-ray photoelectron spectroscopy was applied to study the hydroxylation of α-Al2O3 (0 0 0 1) surfaces and the stability of surface OH groups. The evolution of interfacial chemistry of the α-Al2O3 (0 0 0 1) surfaces and metal/α-Al2O3 (0 0 0 1) interfaces are well illustrated via modifications of the surface O1s spectra. Clean hydroxylated surfaces are obtained through water- and oxygen plasma treatment at room temperature. The surface OH groups of the hydroxylated surface are very sensitive to electron beam illumination, Ar+ sputtering, UHV heating, and adsorption of reactive metals. The transformation of a hydroxylated surface to an Al-terminated surface occurs by high temperature annealing or Al deposition.  相似文献   

18.
Oxygen adsorption on Mo2C(0 0 0 1) has been investigated with angle-resolved photoemission spectroscopy (ARPES). When the surface is reacted with O2, the O 2p-induced states are formed at 4.1 and 5.3 eV at the point. The emissions around the Fermi level are also intensified by oxygen adsorption, which is due to the formation of a partially filled state. It is found that the reactivity of the surface toward H2O adsorption is much enhanced by pre-adsorption of oxygen. The reactivity is found to be maximized at θO ∼ 0.2.  相似文献   

19.
Ab initio total energy Hartree-Fock calculations of ultrathin films of α-Al2O3 on (0 0 0 1) α-Cr2O3 templates are presented. The surface relaxation, the in-plane reconstruction and the surface and strain energies of the slabs are studied as a function of alumina film thickness. The surface Al layer is found to relax inwards considerably, with the magnitude of the inwards relaxation depending on the thickness of the ultrathin alumina film in a non-linear manner. The calculations also reveal that ultrathin films of alumina lower the surface energy of (0 0 0 1) α-chromia substrates. This indicates that the (0 0 0 1) α-chromia surface provides favourable conditions for the templated growth of α-alumina. However, increasing the alumina film thickness is found to give rise to a significant increase in strain energy. Finally, the electronic properties at the surface of the (0 0 0 1) α-Al2O3/α-Cr2O3 slabs are investigated. Here it is found that the alumina coating gives rise to an increase in the covalency of the bonds at the surface of the slabs. In contrast, the influence of an alumina layer on the electrostatic potential at the surface of the chromia slab is relatively minor, which should also be beneficial for the templated growth of α-alumina on (0 0 0 1) α-chromia substrates.  相似文献   

20.
The normal incidence X-ray standing wave (NIXSW) technique, supported by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS), has been used to determine the local adsorption geometry of SO2 and SO3 on Ni(1 1 1). Chemical-state specific NIXSW data for coadsorbed SO3 and S, formed by the disproportionation of adsorbed SO2 after heating from 140 K to 270 K, were obtained using S 1s photoemission detection. For adsorbed SO2 at 140 K the new results confirm those of an earlier study [Jackson et al., Surf. Sci. 389 (1997) 223] that the molecule is located above hollow sites with its molecular plane parallel to the surface and the S and O atoms in off-atop sites; corrections to account for the non-dipole effects in the interpretation of the NIXSW monitored by S 1s and O 1s photoemission, not included in the earlier work, remove the need for any significant adsorption-induced distortion of the SO2 in this structure. SO3, not previously investigated, is found to occupy an off-bridge site with the C3v axis slightly tilted relative to the surface normal and with one O atom in an off-atop site and the other two O atoms roughly between bridge and hollow sites. The O atoms are approximately 0.87 Å closer to the surface than the S atom. This general bonding orientation for SO3 is similar to that found on Cu(1 1 1) and Cu(1 0 0) both experimentally and theoretically, although the detailed adsorption sites differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号