首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine doped titanium dioxide has been successfully prepared by simple hydrolysis of tetrabutyl titanate in the presence of iodic acid. The adopted method allowed for the production of spherical iodine doped titaniun dioxide nanoparticles with varied amount of iodine content. Analysis by X-ray diffraction, Raman, transmission electron microscopy as well as UV-vis DRS revealed that titanium dioxide nanostructures were doped with iodine which existed in two different valence states I5+ and I. The iodine in the form of I5+ is believed to have doped into the lattice whereas I was well dispersed on the surface of TiO2 probably as iodine adducts hence rendering it to be highly absorbing in visible light region. The I-TiO2 exhibited improved photocatalytic activity toward degradation of acid orange 7 (AO7), methyl orange (MO) and 2,4-dichlorophenol (2,4-DCP) under visible light over the pristine TiO2 prepared by the same method. High catalytic properties are attributed to iodine doping which led to high specific surface area, absorption in visible region as well as alleviation of charge carrier recombination. The most probable route undertaken in the degradation of AO7 is through indirect oxidation by the hydroxyl radicals.  相似文献   

2.
The photocatalytic degradation of methylene blue and 4-chlorophenol on nanocrystalline TiO2 (nc-TiO2) under UV irradiation was investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nanocrystalline TiO2 films were prepared from suspensions containing TiO2-crystallites of different average sizes, the smallest one being 12 nm. The organic substances (either methylene blue or 4-chlorophenol) were applied to these films. The specimens were studied in the pristine state and upon UV exposure. The UV illuminations were carried out both under atmospheric conditions and in situ under ultrahigh vacuum in the ToF-SIMS instrument. Distinct mass signals from the parent molecules and from fragment ions are observed for the as-prepared samples. Upon irradiation with UV light under atmospheric conditions, the surface composition is significantly changed, an observation ascribed to photocatalytic reactions induced by UV photons: the parent molecule signals are strongly diminished whereas fragmentation products are identified to be present at the TiO2 surfaces. UV irradiations carried out under different vacuum conditions in the ToF instrument (ultrahigh vacuum, air or oxygen adsorption) indicate that varying ambient conditions may influence the photocatalytic reaction on the nanocrystalline TiO2 films.  相似文献   

3.
Iodine-doped mesoporous TiO2 (I/TiO2) was prepared by hydrothermal method, using tetrabutyl titanate as precursor, potassium iodate as iodine sources. The as-prepared I/TiO2 catalysts were characterized by UV-vis, XRD, TEM, BET, TG/DTA, XPS and photoluminescence (PL) spectroscopy. Production of OH radicals on the I/TiO2 surface was detected by the PL technique using terephthalic acid as a probe molecule. The effects of hydrothermal reaction temperature, calcination temperature and iodine doping content on the structure and properties of the catalysts were investigated. The results showed that iodine-doped TiO2 calcinated at 300 °C have good anatase crystal. The optimal hydrothermal conditions have been determined to be that reaction temperature 120 °C, calcinated temperature 300 °C and added 1.16 mmol iodine dopants. The average particle size of I/TiO2 synthesized under optimal condition (I-3 sample) is about 3.9 nm. The I-3 photocatalyst contains 100% anatase crystalline phase of TiO2. BET specific surface area of I-3 sample is184.8 m2 g−1 and is 3.67 times that of pure TiO2 (50.37 m2 g−1). Iodine in I/TiO2 catalyst mainly exists in the form of I2, and photoactivity of I/TiO2 catalyst in visible light comes from photosensitize of I2. I/TiO2 catalysis shows very high efficiency for the degradation of phenol under visible light.  相似文献   

4.
There are two major difficulties in the TiO2 liquid-solid photocatalytic system: effective immobilization of the TiO2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, Fe2O3-TiO2 coatings supported on activated carbon fiber (ACF), have been prepared in one step by a convenient and efficient method—metal organic chemical vapor deposition (MOCVD). XRD results revealed that Fe2O3-TiO2 coatings mainly composed of anatase TiO2, α-Fe2O3 phases and little Fe2Ti3O9. The pore structure of ACF was preserved well after loading with Fe2O3-TiO2 coatings. UV-vis diffuse reflectance spectra showed a slight shift to longer wavelengths and an enhancement of the absorption in the visible region for Fe2O3-TiO2 coatings, compared to the pure TiO2 sample. A moderate Fe2O3-TiO2 loading (13.7 wt%) was beneficial to mineralizing wastewater because the intermediates could be adsorbed onto the surface of photocatalyst following decomposition. The stable performance revealed that the Fe2O3-TiO2 coatings were strongly adhered to the ACF surface, and the as prepared catalysts could be reused showing potential application for wastewater treatment.  相似文献   

5.
N-doped TiO2 nanotube arrays (NTN) were prepared by anodization and dip-calcination method. Hydrazine hydrate was used as nitrogen source. The surface morphology of samples was characterized by SEM. It showed that the mean size of inner diameter was 65 nm and wall thickness was 15 nm for NTN. The ordered TiO2 nanotube arrays on Ti substrate can sustain the impact of doping process and post-heat treatment. The atomic ratio of N/Ti was 8/25, which was calculated by EDX. Photoelectrochemical property of NTN was examined by anodic photocurrent response. Results indicated the photocurrent of NTN was nearly twice as that of non-doped TiO2 nanotube arrays (TN). Photocatalytic activity of NTN was investigated by degrading dye X-3B under visible light. As a result, 99% of X-3B was decomposed by NTN in 105 min, while that of TN was 59%.  相似文献   

6.
A visible light responsive N-doped TiO2 was prepared via a reduction-nitridation procedure by nonthermal plasma treatment. X-ray diffraction, N2 adsorption, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared TiO2 samples. The plasma treatment did not change the phase composition and particle sizes of TiO2 samples, but extended its absorption edges to the visible light region. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of TiO2 prepared by reduction-nitridation procedure were much higher than that of samples prepared by simple nitridation treatment. The enhanced activity was ascribed to the substitutional N-doping and appropriate concentration of oxygen vacancies. TOHN10 prepared by reduction-nitridation procedure exhibited excellent photocatalytic stability. A possible mechanism for the photocatalysis was proposed.  相似文献   

7.
Reverse microemulsions, consisting of n-hexanol, Triton X-100, Cyclohexane and aqueous salt solutions, were used to synthesize BiOI, TiO2 and BiOI/TiO2 hybrid nanoparticles at room temperature. The particles had been characterized by X-ray powder diffraction, FT-IR spectra, TG-DSC analysis, nitrogen sorption, electron microscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of those particles were evaluated by degradation of methyl orange under visible light irradiation. The BiOI/TiO2 composites showed about 5 times higher photocatalytic performances than BiOI when the mole ratio of BiOI to TiO2 was 75%. The remarkable enhancement in the visible light photocatalytic activities of the BiOI/TiO2 heterostructures could be first attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitated the transfer of the photoinduced carriers. Meanwhile, the heterojunction formed between BiOI and TiO2 would further retard the recombination of photoinduced carriers. In addition, high degree of crystallization, bimodal porous structure, relative large specific surface area, and appropriate energy band gap have great contribution to the enhancement of photocatalytic performance.  相似文献   

8.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

9.
TiO2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.  相似文献   

10.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

11.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

12.
TiO2 was treated by water in an ultrasonic bath, resulting in the enhancement of the photocatalytic activity for the decomposition of methylene blue under UV and visible light irradiation. No change in the crystallinity and optical properties of TiO2 by the H2O-treatment was observed. The X-ray photoelectron spectroscopy (XPS) and FT-IR data revealed that the C impurities were oxidized by this treatment, indicating that the change in the structure of the C impurities plays a pivotal role in the photocatalytic activity of TiO2.  相似文献   

13.
TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO2 mass weight, respectively, and the linkage between DBS groups and TiO2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO2 is also related to the increase in the capability for adsorbing RhB.  相似文献   

14.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

15.
In this work, titanium dioxide (TiO2) nanofibers were obtained from anodic oxidation process. A piece of titanium sheet was anodized in 1.0 M sodium chloride (NaCl) solution, at 30 V. The as-anodized sample was calcinated at 400 °C for one hour. Subsequently the sample was characterized using field-emission scanning electron microscopy (FE-SEM), high resolution X-ray diffraction (HR-XRD), and Raman spectroscopy. Interestingly, results showed rutile phase dominates over anatase phase, which is rarely reported. In addition, the possible chemical reactions that lead to the formation of nanofibers were proposed. It was found that the nanofibers having an average length of 3 μm, also diameter of 83 nm.  相似文献   

16.
In the current work, TiO2 nanotube array was prepared via electrochemical anode method. Then the Bi2O3 nanoparticles were deposited onto the TiO2 nanotube array via dip-coating method from an amorphous complex precursor. The crystal structures were characterized via X-ray diffraction analysis. Their surface textures were observed via electron-scanning microscope. The prepared composite array electrode exhibited high photoelectrocatalytic activities towards degrading organic contaminants under visible light irradiation. High photoelectrocatalytic activities were also exhibited under UV light irradiation. The catalytic mechanism was discussed based on the analysis of electrochemical and degradation kinetics results. It is suggested a P (Bi2O3)-N (TiO2) junction was formed to increase the catalytic activates. The stability of the electrode materials was confirmed finally.  相似文献   

17.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

18.
Vermiculite was treated by sulfuric or nitric acid aqueous solutions with different concentration. These modified materials as the promising supports, were used to immobilize TiO2. TiO2 was prepared by the precursor, which was obtained by substituting partly isopropyl alcohol with Cl in titanium chloride {[Ti(IV)(OR)nClm] (n = 2-3, m = 4 − n)}. The TiO2/vermiculite composites were characterized by X-ray diffraction, scanning electron microscopy, and the nitrogen absorption. Their photocatalytic activity was evaluated by removal of methylene blue (MB). The pure anatase type crystalline phase was well deposited on the supports. The concentrations of acid for treatment had a significant influence on pore sizes and surface area of vermiculite. The treatment process changed microstructure of vermiculite, modified its characteristics, and farther improved the catalytic activity and absorption capacity of TiO2/vermiculite composites. The treatment effect of nitric acid was superior to that of sulfuric acid.  相似文献   

19.
Iodine-doped TiO2 nanocrystallites (denoted as I-TNCs) were prepared via a newly developed triblock copolymer-mediated sol-gel method at a temperature of 393 K. I-doping, crystallization and the formation of porous structure have been simultaneously achieved. The obtained particles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectrophotometer. The results indicated that the as-prepared I-TNCs possessed a diameter of ca. 5 nm with anatase crystalline structure and a specific surface area of over 200 m2 g−1. The presence of iodine expanded the photoresponse in visible light range, and led to enrich in surface hydroxyl group on the TiO2 surface. Compared with the commercial photocatalyst P25, the I-TNCs significantly enhanced the photocatalytic efficiency in the degradation of rhodamine B and 2,4-dichlorophenol, and the I-TNCs with 2.5 mol% doping ratio exhibited the best photocatalytic activity.  相似文献   

20.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号