首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Well-aligned ZnO nanorod array, synthesized by wet chemical bath deposition (CBD) method on conductive indium-in-oxide (ITO) substrate, was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Surface photovoltage (SPV) technique based on a scanning Kelvin Probe system was employed to investigate the optoelectronic behavior of ZnO nanorod array. The surface photovoltage and its time-resolved evolution process are used to determine the energy level structure of the ZnO nanorod array.  相似文献   

2.
The angular dependent photoluminescence from ZnO nanorod array was investigated. Variations in the excitation and detection angles provided to reveal a blue shift and then splitting of a near-band edge emission into two bands. It is suggested that the observed phenomenon is caused by an inhomogeneous distribution of the emission along the nanorod length. The spatially resolved cathodoluminescence measurements confirmed that indeed the emission along the length of the nanorod is inhomogeneous and the top and bottom parts of the nanorod exhibit different emission spectra.  相似文献   

3.
The ZnO nanorod array films have been epitaxially deposited on indium tin oxide (ITO) glass along 〈0001〉 direction. It is found that the film is grown in a two-step process including nanoparticle film nucleation and oriented rod growth. The as-prepared ZnO film shows a dominant diamagnetic signal and a weak ferromagnetic signal at room temperature. The room temperature ferromagnetism deteriorated by annealing in air or N2. The photoluminescent spectra revealed that the intensity of ZnO defect band decreases after annealing. Thus, the decreased ferromagnetism is likely to have resulted from the decrease of oxygen vacancies and defects in the as-prepared film. Moreover, ZnO deposited at various times showed that defects located at or near the interface between the substrate and the film play a major role in ferromagnetism. It suggests that ferromagnetism can be tuned by changing the defects in ZnO.  相似文献   

4.
Qian-Qian Gong 《中国物理 B》2022,31(9):98103-098103
The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod (NR) array films as the template. Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs, the uniquely etched and W-doped ZnO (EWZ) nanotube (NT) array films with larger surface area, more active sites and better energy band structure were used to improve the photoelectrochemical (PEC) performance and the loading quality of CdS quantum dots (QDs). On the basis of their better surface characteristics, the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection; this effectively improved the light-harvesting ability, charge transportation and separation as well as charge injection efficiency during the PEC reaction. Therefore, all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance. The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA· cm-2, 2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs. The corresponding etching and optimizing mechanisms were also discussed.  相似文献   

5.
A photodiode with planar heterojunction was fabricated using copper (II) phthalocyanine (CuPc) organic semiconductor and zinc oxide (ZnO) inorganic nanoparticles (NPs, ~5 nm). The current–voltage (I–V) characteristics of ITO/ZnO NPs/CuPc/Ag device in dark and under illumination with a solar simulator were investigated in detail. The measurement results showed that the device exhibited good rectifying behavior in dark and under illumination. A rectification ratio (RR) of 15.44 at 1.95 V was achieved for the device under 100 mW/cm2 illumination power. Also, the RR of the device as a function of light intensity was observed. The photoresponsive mechanism of the photodiode was illuminated in term of its energy band diagram.  相似文献   

6.
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ~300 nm and ~2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 °C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.  相似文献   

7.
Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the enhanced intensity of reflective SHG along the long axis of ZnO nanorods were observed by using p-polarized pulses, which is explained by the optical confinements. The nonlinear absorption coefficient measured with s-polarization reached the maximum 4.0×10^4cm/GW at the wavelength -750nm, which revealed a large two-photon resonance absorption attributed to the quantum confined exciton when the polarization is vertical to the long axis of ZnO nanorod.  相似文献   

8.
利用湿化学法在FTO玻璃基底上制备了高度规整的ZnO纳米棒阵列(ZnO NRAs),以此为衬底,采用磁控溅射法在ZnO NRAs表面沉积Cu_2O薄膜。分别用X射线衍射仪、X射线光电子能谱、扫描电镜、光致光谱、紫外可见分光光度计和电化学工作站对样品的物相、形貌、吸收光谱、光电性能进行了表征,用甲基橙(MO)模拟有机物废水研究复合材料的光催化性能。结果表明:ZnO纳米棒为六方纤锌矿结构,其直径约为80~100 nm,长约2~3μm,棒间距约100~120 nm。立方晶系的Cu_2O颗粒直径约为100~300 nm,形成致密膜层并紧密覆盖在ZnO NRAs表面上,构成ZnO/Cu_2O异质结纳米阵列(ZnO/Cu_2O HNRAs)结构。与纯ZnO NRAs和Cu_2O相比,ZnO/Cu_2O HNRAs在可见光范围内的吸收显著增强,吸收波长向可见光方向偏移。ZnO/Cu_2O HNRAs的载流子传递界面的电荷转移速度快,有效促进了光生电子和空穴的分离。在紫外-可见光照射65 min后,ZnO/Cu_2O HNRAs的降解效率为94%,分别是纯ZnO NRAs和Cu_2O的18倍和1.7倍。  相似文献   

9.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

10.
High quality vertically aligned ZnO nanorods (NRs) were grown by low-temperature aqueous chemical technique on 4H-n-SiC substrates. Schottky light-emitting diodes (LEDs) were fabricated. The current-voltage (I–V) characteristics of Schottky diodes reveal good rectifying behavior. Optical properties of the ZnO nanorods (NRs) were probed by cathodoluminescence (CL) measurements at room temperature complemented with electroluminescence (EL). The room-temperature CL spectra of the ZnO NRs exhibit near band edge (NBE) emission as well as strong deep level emission (DLE) centered at 690 nm. At room temperature the CL spectra intensity of the DLE was enhanced with the increase of the electron beam penetration depth due to the increase of defect concentration at the interface and due to the conversion of self-absorbed UV emission. We observed a variation in the DLE along the nanorod depth. This indicates a relatively lower structural quality near the interface between ZnO NRs and n-SiC substrate. The room-temperature CL spectra of SiC show very weak emission, which confirms that most of the DLE is originating from the ZnO NRs, and SiC has a minute contribution to the emission.  相似文献   

11.
Some rare earth (Dy, Nd and Sm) doped ZnO electroluminors have been prepared in vacuum (1 torr) and their photo (PL) and electroluminescence (EL) spectra investigated at room temperature at different concentrations of rare earth (RE) ions. Compared to the spectra of undoped ZnO, these spectra consist of the same bands shifted either towards low or high energy side and the intensity of high energy band is decreased while that of low energy band is enhanced. In any case no additional band or line was observed. The experimental results have been explained on the basis of donor-acceptor pair model of recombination process where donor levels are due to RE ions and the acceptors are the luminescent centres of undoped ZnO electroluminors. The mechanism of excitation is of acceleration-collision type.  相似文献   

12.
薛振杰  李葵英  孙振平 《物理学报》2013,62(6):66801-066801
采用水溶液法合成了巯基乙酸(TGA) 包覆的CdSe 量子点. 通过X 射线粉末衍射和高分辨透射显微镜检测结果证实, 合成得到闪锌矿结构CdSe 量子点. 能谱图和傅里叶变换红外光谱图结果说明, 在核CdSe 纳米粒子表面与配体TGA 之间有CdS 壳层结构形成. 利用样品表面光电压(SPV) 谱, 指认CdSe 量子点精细能带结构以及各自对应的激发态特征: 475 nm (2.61 eV) 和400 nm (3.1 eV) 两个波长处的SPV 响应峰分别与CdSe 核和CdS 壳层带-带隙跃迁相对应; 370 nm (3.35 eV) 附近SPV 响应峰可能与TGA 中羰基与巯基或羧基之间发生的n →π* 跃迁有关. 场诱导表面光电压谱结果证实, 合成的CdSe 量子点具有明显的N 型表面光伏特性, 而上述n→π* 跃迁则具有P 型表面光伏特性. 荧光光谱谱线均匀增宽以及SPV 响应峰位蓝移, 说明样品具有明显的量子尺寸效应. 结合不同pH 值下合成的CdSe 量子点的SPV 谱和表面光声谱发现, SPV 响应强度与表面光声光谱信号强度变化趋势恰好相反. 上述样品表面光伏效应表明, CdSe 量子点表面和相界面处的精细电子结构以及光生载流子的输运特性均与量子点的尺寸大小存在某种内在联系. 关键词: 硒化镉量子点 光生载流子 表面光电压谱 表面光声光谱  相似文献   

13.
ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 °C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation.  相似文献   

14.
钟文武  刘发民  蔡鲁刚  丁芃  柳学全  李一 《物理学报》2011,60(11):118102-118102
采用水热合成法在预先生长的ZnO种子层的玻璃衬底上制备出Al和Sb共掺ZnO纳米棒有序阵列薄膜. 通过X射线衍射、扫描电镜、透射电镜和选区电子衍射分析表明:所制备的薄膜由垂直于ZnO种子层的纳米棒组成, 呈单晶六角纤锌矿ZnO结构, 且沿[001]方向择优生长, 纳米棒的平均直径和长度分别为27.8 nm和1.02 μm. Al和Sb共掺ZnO纳米棒有序阵列薄膜的拉曼散射分析表明:相对于未掺杂ZnO薄膜的拉曼振动峰(580 cm-1), Al和Sb共掺ZnO阵列薄膜的E1(LO)振动模式存在拉曼位移. 当Al和Sb的掺杂量为3.0at%,4.0at%,5.0at%,6.0at%时, Al和Sb共掺ZnO阵列薄膜的拉曼振动峰的位移量分别为3,10,14,12 cm-1. E1 (LO) 振动模式位移是由Al和Sb掺杂ZnO产生的缺陷引起的. 室温光致发光结果表明:掺杂Al和Sb后, ZnO薄膜在545 nm处的发光强度减小,在414 nm处的发光强度增加. 这是由于掺杂Al和Sb后, ZnO薄膜中Zni缺陷增加, Oi缺陷减少引起的. 关键词: Al和Sb共掺ZnO薄膜 纳米棒有序阵列 结构表征 拉曼散射  相似文献   

15.
钟红梅  刘茜  孙艳  陆卫 《中国物理 B》2009,18(11):5024-5028
ZnO nanopowder is successfully synthesized by annealing the precursors in oxygen gas using the chemical precipitation method. Structural and optical properties of thus synthesized ZnO nanopowder are characterized by scanning electron microscopy (SEM) and photoluminescence (PL). The morphology of ZnO nanopowders evolves from nanorod to cobble as annealing temperature increases from 500 to 1000~\du, while spiral structures are observed in the samples annealed at 900 and 1000~\du. The PL spectra of ZnO nanopowder consist of largely green and yellow emission bands. The green emission from ZnO nanopowder depends strongly on the annealing temperature with a peak intensity at a temperature lower than 800~℃ while the yellow emission is associated with interstitial oxygen \rm O_\i.  相似文献   

16.
Highly oriented ZnO nanorod was successfully synthesised on Ag nanoseed coated FTO substrate via a microwave hydrolysis approach. It was found that the morphology and the optical properties of the ZnO nanorod are strongly influenced by the power of the microwave irradiation used during the growth process. The aspect ratio of the nanorods changed from high to low with the increasing of microwave power. It was also found that the optical band gap of the ZnO nanorod red shifted with the increasing of the microwave power, reflecting an excellent tune ability of the optical properties of ZnO nanorods. The photocatalytic activity of these unique nanorod was evaluated by a dehydrogenation process of isopropanol to acetone in the presence of ZnO nanorod. It was found that the ZnO nanorod exhibited an excellent catalytic performance by showing an ability to accelerate the production of 0.031 mol L−1 of acetone within only 35 min or 0.9 mmol L−1 min−1 from isopropyl alcohol dehydrogenation. It was almost no conversion from isopropyl alcohol when ZnO nanorods was absence during the reaction. In this report, a detailed mechanism of ZnO nanorod formation and the relationship between morphology and optical energy band gap are described.  相似文献   

17.
Smith-Purcell radiation from a charge running near a photonic crystal is calculated for a slab system of a periodic array of dielectric spheres, with the photonic band effect taken into account exactly. The radiation spectrum has a series of resonantly enhanced structures, which are shown to arise accompanying the excitation of the photonic bands. It is also shown that the overall intensity of the emission band does not depend very strongly on the slab thickness but the height of the resonant peaks increases progressively with thickness due to the enhanced Q value of excited photonic bands.  相似文献   

18.
In this study, the effects of thermal annealing temperature and duration on ZnO nanorod arrays fabricated by hydrothermal method were investigated. The annealed ZnO/Si(1 1 1) substrate was used for ZnO nanorod array growth. The effects of annealing treatment on the structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and room-temperature photoluminescence measurements. With the annealing temperature of 750 °C and the annealing duration of 10 min, both the structural and optical properties of the ZnO nanorod arrays improved significantly, as indicated in the X-ray diffraction and photoluminescence measurement.  相似文献   

19.
Water W  Chen SE  Meen TH  Ji LW 《Ultrasonics》2012,52(6):747-752
A ZnO guiding layer with nanorod arrays grown on a 90°-rotated ST-cut (42°45) quartz substrate was used to fabricate a Love wave fluid sensor. ZnO nanorod arrays synthesized on the guiding layer enhance the sensitivity of the flow rate. ZnO thin films were deposited by radio frequency magnetron sputtering and ZnO nanorod arrays were then synthesized on the thin films via the hydrothermal method. The crystalline structure and surface morphology of ZnO thin films and nanorod arrays were examined by X-ray diffraction and scanning electron microscopy. The effects of the thickness of ZnO thin film and the surface morphology of ZnO nanorod arrays on the sensitivity of flow rate were investigated. A linear response between flow rate and the return loss of the sensor with one-port resonator type can be obtained by adjusting the thickness of ZnO thin film and the length of nanorod arrays.  相似文献   

20.
在原子力显微镜的接触扫描模式下,研究了半导体ZnO纳米棒的压电放电特性.采用两步湿化学法制备沿c轴择优生长的ZnO纳米棒阵列;利用镀Pt探针接触扫描ZnO纳米棒获得峰值达120 pA电流脉冲,脉冲持续时间可达30 ms,电流脉冲与纳米棒的形貌存在对应关系.镀Pt探针与ZnO纳米棒接触形成肖特基二极管,I-V特性研究表明放电的ZnO纳米棒压电电势必须大于03 V,以驱动肖特基二极管并输出电流;放电时肖特基二极管的结电阻达吉欧(GΩ)量级,是影响压电电势输出的主要因 关键词: ZnO 纳米棒 压电放电 肖特基接触  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号