首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cobalt oxides/carbon fibers (CoOx/CFs) composites were synthesized by thermal oxidation of cobalt coated carbon fibers (Co/CFs). The scanning electron microscopy images and X-ray diffraction pattern indicate that the layers are about 0.7 μm and composed of Co3O4 and CoO (CoOx), the preferred condition for preparation of CoOx/CFs composites is to anneal Co/CFs precursors at 350 °C for 3 h in air. The coercivity, saturation magnetization and residual magnetization of the CoOx/CFs composites are 464.8 Oe, 10.62 emu/g and 2.21 emu/g, respectively. The reflectivity of cobalt oxides coated carbon fibers (1.11-5.12 mm in thickness) is less than −10 dB over the working frequency range of 4.04-18.00 GHz and less than −20 dB over 11.54-14.77 GHz. The lowest reflectivity is −45.16 dB at 13.41 GHz when the thickness is 1.50 mm.  相似文献   

2.
Cobalt hydroxide ultra fine nanowires were prepared by a facile hydrothermal route using hydrogen peroxide. This method provides a simple, low cost, and large-scale route to produce β-cobalt hydroxide nanowires with an average diameter of 5 nm and a length of ca. 10 μm, which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced highly uniform nanowires of cobalt oxide (Co3O4) under temperature 500 °C in the presence of oxygen gas. The produced cobalt oxide was characterized by X-ray diffraction, transmission electronic microscopy, and selected-area electron diffraction. The results indicated that cobalt oxide nanowires with an average diameter of 10 nm and a length of ca. 600 nm have been formed, which show a predominant well-crystalline cubic face-centered like phase.  相似文献   

3.
Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 °C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 °C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41.  相似文献   

4.
CoxFe1−x nanowire arrays with various diameters and different composition were fabricated by ac electrodeposition using porous alumina template. Coercivity along the easy axis reaches to a maximum at 2330 Oe, for CoxFe1−x nanowires containing about 40 at% Co. The crystalline structure of the nanowires was concentration-independent and shows a bcc structure. The critical diameter for transition from coherent rotation to curling mode is 35 nm for CoFe containing less than 40 at% Co while it is 30 nm for those with more than 40 at% Co. Optimizing the magnetic properties of CoFe with different Co content was seen to be dependent on the diameter of nanowires. For 25 nm diameter, the optimum was shown below 50 at% Co while it was seen above 50 at% for nanowires with 50 nm diameter. The angular dependence of the coercivity with nanowires diameter were also studied.  相似文献   

5.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

6.
Su S  Guo W  Yi C  Leng Y  Ma Z 《Ultrasonics sonochemistry》2012,19(3):469-474
Degradation of the antibiotics amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with only oxone (2KHSO5·KHSO4·K2SO4), cobalt activated oxone (oxone/Co2+), oxone + ultrasonication (oxone/US) and cobalt activated oxone + ultrasonication (oxone/Co2+/US). The chemical oxygen demand (COD) removal efficiency were in the order of oxone < oxone/Co2+ < oxone/US < oxone/Co2+/US for the amoxicillin solution. The variables considered for the effect of degradation were the temperature, the power of ultrasound, the concentration of oxone, as well as catalyst and the initial amoxicillin concentration. More than 98% of COD removal was achieved within 60 min under optimum operational conditions. Comparative analysis revealed that the sulfate radicals had the high oxidation potential and the use of ultrasound irradiation reduced the energy barrier of the reaction and increased the COD removal efficiency of organic pollutants. The degradation of amoxicillin follows the first-order kinetics.  相似文献   

7.
Nanocrystalline octahedra of cobalt ferrite CoFe2O4 powders were synthesized using the organic acid precursor route. The effect of the calcination temperature, Fe3+/Co2+ molar ratio, calcination time and type of organic acid (oxalic, benzoic and tartaric acids) on the formation, crystallite size, microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ molar ratio was varied from 2 to 1.739 while the annealing temperature was controlled from 400 to 1000 °C for various periods from 0.5 to 2 h. The resulting powders were investigated using X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). XRD results indicate that a well crystallized, single spinel cobalt ferrite phase was formed for the precursors annealed at 600-800 °C for 2 h, using oxalic and tartaric acids as precursors for Fe3+/Co2+ molar ratio 1.818. The crystallite size of as-formed powders was in the range of 38.0-92.6 nm at different operating conditions. The calcination temperature and Fe3+/Co2+ molar ratio have a significant effect on the microstructure of the produced cobalt ferrite. The microstructure of the produced powders was found to be octahedra-shaped. The crystalline, pure cobalt ferrite powders with magnetic properties having a maximum saturation magnetization (76.1 emu/g) was achieved for the single phase at Fe3+/Co2+ molar ratio 1.818 and annealing temperature of 600 °C for 2 h using tartaric acid precursor.  相似文献   

8.
Small crystallites of a metastable phase Co0.5Pt0.5 are precipitated by heating a rheological liquid precursor of cobalt–hydrazine complex and platinum chloride H2PtCl6·xH2O in polymer molecules of poly(vinylpyrrolidone) (PVP) in ethylene glycol. The hydrazine co-reduces nascent atoms from the Co2+ and Pt4+ that recombine and grow as Co0.5Pt0.5. The PVP molecules cap a growing Co0.5Pt0.5 as it achieves a critical size so that it stops growing further in given conditions. X-ray diffraction pattern of a recovered powder reveals a crystalline Co0.5Pt0.5 phase (average crystallite size D∼8 nm) of a well-known Fm3m-fcc crystal structure with the lattice parameter a=0.3916 nm (density ρ=14.09 g/cm3). A more ordered L10 phase (ρ=15.91 g/cm3) transforms (D≥25 nm) upon annealing the powder at temperature lesser than 700 °C (in vacuum). At room temperature, the virgin crystallites bear only a small saturation magnetization Ms=5.54 emu/g (D=8 nm) of a soft magnet and it hardly grows on bigger sizes (D≤31 nm) in a canted ferromagnetic structure. A rectangular hysteresis loop is markedly expanded on an optimally annealed L10 phase at 800 °C for 60 min, showing a surface modified coercivity Hc=7.781 kOe with remnant ratio Mr/Ms=0.5564, and Ms=39.75 emu/g. Crystallites self-assembled in an acicular shape tailor large Hc from ideal single domains and high magnetocrystalline anisotropy of a hard magnet L10 phase.  相似文献   

9.
Gilbert's damping constants, α, of Co(tCo)/Pt (1.4 nm) multilayer thin films are investigated by Q-band FMR analysis. α is calculated from the resonance width of the FMR spectrum. With decreasing tCo, the α value decreases from 0.034 (tCo=8.7 nm) to 0.023 (tCo=1.8 nm), and then increases to 0.037 (tCo=1.0 nm). The decrease of α with tCo>1.8 nm is probably due to the eddy current loss effects. The increase of α with tCo<1.8 nm would be caused by the increase of the distortion between the Co and the Pt layers at the interface. When the magnetic field direction was changed from θ=90° (parallel to the specimen) to θ=0° (perpendicular to the specimen), the α of all the specimens increased, and a sharp step in α was observed around θ=40°, where the α has the maximum value.  相似文献   

10.
Photomagnetism is one of the most attractive topics in recent research on molecular solids. In order to produce a photo-controllable magnet, we have synthesized a novel organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2′-dimethyl-3,3′-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (1a) and cobalt LDHs (layered double hydroxides). Based on the elemental analysis, the title compound, which was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO)·H2O (2) and 1a, has the chemical composition, Co4(OH)7(1a)0.5·3H2O (3). Powder X-ray diffraction analysis revealed the interlayer distance of c=27.8 Å. The magnetic susceptibility measurements elucidated the ferromagnetic intra- and inter-layer interactions and the Curie temperature of Tc=9 K. By UV irradiation of 313 nm, 3 shows the photo-isomerization of diarylethene anion from the open form to the closed one in solid state, which leads to the decreases in the coercive field and the remnant magnetization. Furthermore, the photo-excited state is returned to the initial state (open form) almost reversibly by visible irradiation of 550 nm.  相似文献   

11.
The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3.  相似文献   

12.
Nanocomposite made of 10 wt% of Co2.4Al0.6O4 particles dispersed in an amorphous SiO2 matrix has been synthesized by a sol-gel method. X-ray diffraction, transmission electron microscopy and magnetic measurements have been used to characterize the properties of nanocomposite. Most of the particles are well crystallized and have an average diameter below 100 nm. Smaller particles with size below 10 nm have also been observed. A large value of the effective magnetic moment per Co2+ ion of 5.08 μB and negative and the low Curie-Weiss paramagnetic temperature Θ∼−6 K, obtained from the high-temperature susceptibility data, indicate a possible mixing of Co2+ and Co3+ ions between tetrahedral and octahedral sites of the spinel crystal lattice. The measurements of static and dynamic magnetic susceptibilities have shown that Co2.4Al0.6O4 particles in SiO2 matrix display a spin glass behavior at low temperatures.  相似文献   

13.
The effect of oxygen/cobalt off-stoichiometry upon magnetism in CaBaCo4O7 has been investigated. It is shown that the oxides CaBaCo4O7+δ and CaBaCo4−xO7−δ (0≤x≤0.20) synthesized below 1100 °C in air exhibit phase separation, where ferrimagnetic regions with TC~56 K to 64 K coexist with regions of magnetic clusters. The latter are detected from ac-susceptibility measurements, which show various frequency dependent peaks at ~14–20 K, 37 K, and 45 K, depending on the stoichiometry. The origin of this phenomenon is attributed to the great sensitivity of the material to oxidation as the synthesis of temperature is lowered, leading to the introduction of additional Co3+ cations, with respect to the ideal formula CaBaCo22+Co23+O7. This excess Co3+ tends to destroy the ferromagnetic zig-zag chains of the ferrimagnetic structure and creates various cobalt spin clusters, leading to the inherent phase separation in the samples.  相似文献   

14.
A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs.The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with IG/ID ratios as high as 10.2 for synthesis at 900 °C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.  相似文献   

15.
Synthesis of cobalt nitrides has been tried in a supercritical nitrogen fluid at high pressure (about 10 GPa) and high temperature (about 1800 K) using diamond anvil cell and YAG laser heating system. We have succeeded to synthesize a single phase of the CFe2-type Co2N easily in a short time. This is the first synthesis by a simple reaction between the pure cobalt and pure nitrogen (supercritical fluid nitrogen). The cell parameters of the synthesized Co2N are a=4.662(9) Å, b=4.332(5) Å and c=2.749(9) Å, respectively.  相似文献   

16.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

17.
Cobalt?Ccobalt carbide [Co x C (x?=?2 or 3)] and cobalt (FCC-Co) microwires have been synthesized using a polyol method in the presence of a high external magnetic field of 4.3?kOe. It was reported before that the synthesis of these particles in the absence of magnetic field leads to the formation of spherical particles. Analysis of the X-ray diffraction (XRD) scans indicates that the synthesized Co x C wires consist of four phases?? ??-Co, ??-Co, Co3C, and Co2C. The percent composition of these phases was 53.3?% Co3C, 26.8?% Co2C, 12.5?% ??-Co, and 7.4?% ??-Co. XRD analysis of the as-synthesized cobalt wires shows that it consists of single-phase FCC-Co. Based on Scherrer analysis of the XRD data, the average crystallite sizes of the cobalt carbide and the cobalt particles are 18.5 and 16.3?nm, respectively. Scanning electron microscopy (SEM) studies show that the diameter of Co x C wires is in the range of 1.6(±0.2)???m with their length varying between 18 and 30???m while the diameter of the cobalt wires is 1.65(±0.1). The SEM results infer that the morphology of the growing particles was controlled by the magnetic field with the applied field directs the growth of the particles into wires. The magnetic measurements indicate a superparamagnetic character of the cobalt wires and a soft ferromagnetic nature of the synthesized Co x C chains. The degree and field range of the interactions between magnetic domains have been investigated using a Henkel plot.  相似文献   

18.
In this paper, carbon nanotubes were synthesized on carbon microfibers by floating catalyst method with the pretreatment of carbon microfibers at the temperature of 1023 K, using C2H2 as carbon source and N2 as carrier gas. The morphology and microstructure of carbon nanotubes were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The composition of carbon nanotubes was determined by energy dispersive X-ray spectroscopy (EDX). The results showed that the surface of treated carbon microfibers was thickly covered by carbon nanotubes with diameters of about 50 nm. EDX image indicated that the composition of carbon nanotubes was carbon. In comparison with the sample grown on untreated carbon microfibers surface, it was found that after carbon microfibers were boiled in the solution of sulfur acid and nitric acid (VH2SO4:VHNO3 = 1:3) and immersed in the solution of iron nitrate and xylene, carbon nanotubes with uniform density can be grown on carbon microfibers surface. Based on the results, we concluded that the pretreatment of carbon microfibers had great effect on the growth of carbon nanotubes by floating catalyst method.  相似文献   

19.
Self-assembled Sm-Co nanoparticles in the form of spherical aggregates (referred as nanospheres) with diameter ranging from 50 to 180 nm were achieved by means of polyol technique. The size distribution of the Sm-Co nanospheres can be regulated close to ∼100 nm by controlling the molar ratio of Sm:Co precursor. The spherical aggregates exhibited Sm2Co7 phase as a major constituent; while the aggregates obtained at higher Co concentration showed co-existence of Co-phase with Sm2Co7 phase. Upon annealing, the biphasic nature of nanospheres (Sm2Co7/Co) transformed into Sm2Co17 structure. By varying the Sm:Co precursor ratio from 1:5 to 1:9, the coercivity (Hc) and magnetization (Ms) values of the as-synthesized nanospheres can be tuned from 336 to 140 Oe and from 63.7 to 108 emu/g, respectively, and these values significantly improved after annealing. Maximum values of Hc (1050 Oe) at the Sm:Co molar ratio of 1:5 and Ms of 184.6 emu/g at the Sm:Co molar ratio of 1:9 were achieved in the annealed samples.  相似文献   

20.
Co-doped ZnO single-crystalline nanorods with 80–100 nm in diameter and 1.5–2 μm in length have been prepared in a simple solution route. X-ray diffraction data and selected area electron diffraction pattern of the diluted magnetic semiconductor nanorods confirm the single crystallinity of Zn1−xCoxO solid solution without impurities of metallic Co or other phases. Magnetic results show that the Zn0.95Co0.05O nanorods exhibit a ferromagnetic characteristic with Curie temperature higher than 380 K. The high-temperature ferromagnetic properties allow this Zn1−xCoxO nanorods potential applications in future spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号