首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report NiO nanowall thin films prepared by a facile hydrothermal synthesis method and their electrochromic application. The as-prepared porous nanowall NiO thin films show a highly porous structure built up by many interconnected nanoflakes with a thickness of about 30 nm. The electrochromic performances of the NiO films are characterized by means of UV–vis spectroscopy and cyclic voltammetry (CV) measurements. The effect of the annealing temperature on electrochromic properties is discussed. The NiO nanowall film annealed at 300 °C exhibits much better electrochromic performance than those counterparts annealed at higher temperature. The film annealed at 300 °C exhibits a noticeable electrochromism with reversible color changes from transparent to brown dark and presents a transmittance variation with 77% at 550 nm. The NiO nanowall film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching times are 3 s and 4 s, respectively. The improved electrochromic performances are due to the porous morphological characteristics with fast ion and electron transfer resulting in fast reaction kinetics and high color contrast.  相似文献   

2.
In this study, we develop a nano-composite nickel oxide (NNO) film on the indium tin oxide (ITO)-coated glass substrate for electrochromic applications. The NNO film is composed of the core-shell structure of NiO/conducting ITO nano-particles. High porosity in the NNO film offers large active surface area for redox reaction. Electrochromic electrodes fabricated with the NNO films produce high transmittance variation (66.2% at a wavelength of 550 nm), fast switching speed (coloring: 3.5 s; bleaching: 4 s) and good durability, which are much better than those of ones made with the traditional nickel oxide films. The structure, morphology, and electrochromic properties are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and UV-vis spectroscopy.  相似文献   

3.
Cu-doped nickel oxide (NiO) thin films were prepared by electrochemial deposition (cathodic deposition) technique onto the fluorine doped tin oxide (F: SnO2; FTO) coated glass substrates from organic solutions. Effects of Cu content on the morphology, structure, optical and electrochromic properties of NiO films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer (UV-vis) and cyclic voltammetry (CV), respectively. SEM images indicated the formation of nanorods after Cu was added. The films were formed with amorphous or short-range ordered NiO grains and a trace of face-centered cubic NixCu1−xO confirmed by XRD. The transmittances of both bleached state and colored state were significantly lowered when Cu was added. The NiO films doped with Cu (the molar ratio was 1/8) exhibited the optimum electrochromic behavior with a variation of transmittance (ΔT) up to ∼80% at the wavelength range of 350-600 nm. Cu doping reduces the response time for both the coloring and bleaching states, and the reversibility of the redox reaction was increased as well.  相似文献   

4.
Nickel oxide thin films were grown onto FTO-coated glass substrates by a two-step process: electrodeposition of nickel sulphide and their thermal oxidation at 425, 475 and 525 °C. The influence of thermal oxidation temperature on structural, optical, morphological and electrochromic properties was studied. The structural properties undoubtedly revealed NiO formation. The electrochromic properties were studied by means of cyclic voltammetry. The films exhibited anodic electrochromism, changing from a transparent state to a coloured state at +0.75 V versus SCE, i.e. by simultaneous ion and electron ejection. The transmittance in the coloured and bleached states was recorded to access electrochromic quality of the films. Colouration efficiency and electrochromic reversibility were found to be maximum (21 mC/cm2 and 89%, respectively) for the films oxidized at 425 °C. The optical band gap energy of nickel oxide slightly varies with increase in annealing temperature.  相似文献   

5.
The performances of electrochromic cells with evaporated amorphous WO3 thin film as electrochromic material in (2.5 M) LiClO4-dioxolane-water electrolytes are presented. A comparison with the results previously obtained in propylene carbonate instead of dioxolane solvent is carried out. The influence of the following parameters has been studied: the thickness of the film, the water content in the electrolyte, the potential applied to the electrochromic electrode during coloration and bleaching processes.  相似文献   

6.
Tungsten oxide (WO3) films were prepared on indium–tin oxide (ITO) glass by sol–gel method. The influence of annealing temperature on the structural, morphological, optical, electrochemical, and electrochromic properties has been investigated. The film annealed at 250 °C with an amorphous structure exhibits a noticeable electrochromic performance, such as the highest optical modulation of 58.5 % at 550 nm, high electrochemical stability, and excellent reversibility (Q b/Q c?=?96.3 %). An electrochromic (EC) device based on WO3/NiO complementary structure shows improved performance. It exhibits high optical transmittance modulation of 62 % at 550 nm, excellent cycling stability, and relatively fast electrochromic response time (10 s for coloration and 19 s for bleaching).  相似文献   

7.
Nickel hydroxide films were prepared using the chemical bath deposition (CBD) technique. The amorphous nature of the films was confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy (XPS) measurements showed that the films exhibited nickel hydroxide nature. The porosity of the films was studied using optical measurements. The electrochromic properties of the porous nickel hydroxide layers were investigated, using cyclic voltammetry, chronoamperometry, in situ transmittance, UV-vis spectroscopy, and impedance spectroscopy. The change in the optical density (ΔOD) was found to be 0.79 for the as-deposited nickel hydroxide films, whereas it is 0.53 and 0.50 for the films annealed at 150 °C and 200 °C, respectively. The in situ transmittance and chronoamperometry curves revealed that the annealed films had a very fast colouration (tc < 290 ms) and decolouration (tb < 130 ms). The measured colouration efficiencies range between 30 and 40 cm2/C. The impedance measurements revealed the faster colouration and good electrochromic properties for the annealed nickel hydroxide films.  相似文献   

8.
刘岩  吕营  何龙桂  刘星元 《发光学报》2016,37(2):187-191
研制了集电致变色和透明导电功能为一体的MoO_3/Ag/MoO_3(MAM)双功能薄膜。MAM薄膜采用电子束热蒸发技术在室温下制备。作为透明电极,MAM薄膜显示出良好的光电性能,可见光平均透过率为59.4%,方块电阻为12.2Ω/□。作为电致变色材料,MAM薄膜具有较快的响应时间(着色时间4.3 s,褪色时间11.1s),25%的光学对比度(528 nm),良好的稳定性(100次循环),以及较高的着色效率(40.5 cm~2·C~(-1)),在已报道的MoO_3着色效率中处于较高的水平。  相似文献   

9.
We prepared nickel oxide (NiO) thin films with p-type Cu dopants (5 at%) using a sol–gel solution process and investigated their structural, optical, and electrical characteristics by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmittance and current–voltage (IV) characteristics. The crystallinity of the NiO films improved with the addition of Cu dopants, and the grain size increased from 38 nm (non-doped) to 50 nm (Cu-doped). The transmission of the Cu-doped NiO film decreased slightly in the visible wavelength region, and the absorption edge of the film red-shifted with the addition of the Cu dopant. Therefore, the width of the optical band gap of the Cu-doped NiO film decreased as compared to that of the non-doped NiO film. The resistivity of the Cu-doped NiO film was 23 Ω m, which was significantly less than that of the non-doped NiO film (320 Ω m). Thus, the case of Cu dopants on NiO films could be a plausible method for controlling the properties of the films.  相似文献   

10.
A significant influence of microstructure on the electrochromic and electrochemical performance characteristics of tungsten oxide (WO3) films potentiostatically electrodeposited from a peroxopolytungstic acid (PPTA) sol has been evaluated as a function of annealing temperature. Powerful probes like X-ray diffractometry (XRD), transmission electron microscopy (TEM), UV-vis spectrophotometry, multiple step chronoamperometry and cyclic voltammetry have been employed for the thin film characterization. The as-deposited and the film annealed at 60 °C are composed of nanosized grains with a dominant amorphous phase, as well as open structure which ensues from a nanoporous matrix. This ensures a greater number of electroactive sites and a higher reaction area thereby manifesting in electrochromic responses superior to that of the films annealed at higher temperatures. The films annealed at temperatures ≥250 °C are characterized by a prominent triclinic crystalline structure and a hexagonal phase co-exists at temperatures ≥400 °C. The deleterious effect on the electrochromic properties of the film with annealing is ascribed to the loss of porosity, densification and the increasing crystallinity and grain size. Amongst all films under investigation, the film annealed at 60 °C exhibits a high transmission modulation (ΔT ∼ 68%) and coloration efficiency (η ∼ 77.6 cm2 C−1) at λ = 632.8 nm, charge storage capacity (Qins ∼ 21 mC cm−2), diffusion coefficient (6.08 × 10−10 cm2 s−1), fast color-bleach kinetics (tc ∼ 275 s and tb ∼ 12.5 s) and good electrochemical activity, as well as reversibility for the lithium insertion-extraction process upon cycling. The remarkable potential, which the film annealed at 60 °C has, for practical “smart window” applications has been demonstrated.  相似文献   

11.
Daeil Kim 《Optics Communications》2010,283(9):1792-1794
Au-intermediate TiO2/Au/TiO2 (TAT) multilayer films were deposited by RF magnetron sputtering onto glass substrates. Changes in the optical and electrical properties of the films were investigated with respect to the thickness of the Au interlayer.The observed optical and electrical properties were dependent on the thickness of the Au interlayer. The resistivity decreased to 3.3 × 10−4 Ω cm for TiO2 films with a 20 nm-thick Au interlayer and the optical transmittance was also influenced by the Au interlayer. Although optical transmittance deteriorated as Au thickness increased, TiO2 films with a 5 nm-thick Au interlayer showed a relatively high optical transmittance of 80% at a wavelength of 550 nm. In addition, since a TAT film with a 5 nm-thick Au interlayer showed a relatively high work function value, it is an alternative candidate for use as a transparent anode in OLEDs and flat panel displays.  相似文献   

12.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

13.
Transparent TiO2 nanotube arrays of micrometer lengths were prepared by anodization of titanium thin film RF sputtered on indium tin oxide (ITO) which was coated on glass substrate. The sputtering process took place at elevated temperature of 500 °C. The structures of the films were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD) while the optical properties of the films were investigated using UV-visible spectroscopy. Two types of electrolytes were used in this work: an aqueous mixture of acetic acid and HF solution and a mixture of NH4F and water dissolved in ethylene glycol. The concentration of NH4F, voltage and the thickness of the sputtered titanium film were varied to study their effect on the formation of TiO2 nanotube arrays. It is demonstrated in this work that the nanoporous layer is formed on top of the ordered array of TiO2 nanotubes. Furthermore, the optical transmittance of TiO2 nanotubes annealed at 450 °C is much lower than the non annealed TiO2 nanotubes in the visible wavelength region.  相似文献   

14.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

15.
The performances of electrochromic cells containing evaporated amorphous WO3 thin films as electrochromic material in 1M LiClO4-propylene carbonate-water electrolytes are presented. Much attention has been paid to some parameters such as the thickness of the layer, the overpotential applied to WO3 electrode during the electrochemical coloration and the amount of water contained in the electrolyte (from 50 ppm to 10% in weight). Simultaneous electrical and optical in situ measurements have been carried out to study electrochromism. The optical data were stored into a microprocessor and restituted after treatment. The method used here gave us the possibility to rapidly test electrochromic materials.  相似文献   

16.
Transparent conductive SnO2:F thin films with textured surfaces were fabricated on soda-lime-silica glass substrates by spray pyrolysis. Structure, morphology, optical and electrical properties of the films were investigated. Results show that the film structure, morphology, haze, transmittance and sheet resistance are dependent on the substrate temperature and film thickness. An optimal 810 nm-thick SnO2:F film with textured surface deposited at 520 °C exhibits polycrystalline rutile tetragonal structure with a (2 0 0) orientation. The sheet resistance, average transmittance in visible region, and haze of this film were 8 Ω/□, 80.04% and 11.07%, respectively, which are suitable for the electrode used in the hydrogenated amorphous silicon solar cells.  相似文献   

17.
Zinc sulfide (ZnS) films with optical thickness (reference wavelength is 620 nm) ranging from 310 to 1240 nm were deposited on quartz substrates at room temperature by a thermal evaporation system. The structure and morphology of the films were investigated by X-ray diffraction, atomic force microscopy, respectively. The optical properties of the films were determined by in situ transmittance measurements and wideband spectra photometric measurements, respectively. The experimental results show that the films exhibit cubic structure, and the intensity of the (2 2 0) diffraction peak enhances with the increase of optical thickness. Surface grain size and surface roughness increase monotonously with increasing film thickness. Refractive indices and extinction coefficients calculated by in situ transmittance measurements are well consistent with those calculated by wideband spectra photometric measurements. Both the refractive index and packing density of the film increase as the increase of film thickness, which confirms the film is positive inhomogeneous and has an expanding columnar structure. Extinction coefficients of the films increase with increasing film thickness, which results from the increase of surface roughness.  相似文献   

18.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

19.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

20.
Tungsten oxide (WO3) thin films have been extensively studied for their interesting physical properties and a variety of potential applications in electrochromic devices. In order to explore the possibility of using these in electrochromic devices, a preliminary and thorough study of the optical properties of the host materials is an important step. Based on this, the influence of annealing temperature on the structural, surface morphological, optical and electrochromic properties has been investigated in the present work. The host material, WO3 films, has been prepared from an ethanolic acetylated peroxotungstic acid sol containing 5 wt.% oxalic acid dehydrate (OAD) by sol-gel technique. The monoclinic structure and textured nature change of the films with the temperature increasing have been investigated by X-ray diffraction analysis. The surface morphology evolution of the films has been characterized by SEM. The shift in absorption edge towards the higher wavelength region observed from optical studies may be due to the electron scattering effects and the optical band filling effect that reveals the crystallization of the film. The amorphous film shows better optical modulation (ΔT = 76.9% at λ = 610 nm), fast color-bleach kinetics (tc ∼ 4 s and tb ∼ 9 s) and good reversibility (Qb/Qc = 90%), thereby rendering it suitable for smart window applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号