首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An historic Strontianite-type specimen from Strontian, Scotland, UK, was characterized to broaden our knowledge on luminescence properties of common carbonates. These fibrous aggregates are Strontianite (SrxCa1−xCO3) with circa 6% of CaO, interfacial water, hydrosilicate anions and substitutional divalent cations, e.g., Ca2+, Mn2+, Fe2+ in structural Sr2+ positions. The specimen was analyzed by X-ray Fluorescence Spectrometry (XRF), Environmental Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectroscopy (ESEM-EDS) probe, Spatially-resolved Cathodoluminescence under the Scanning Electron Microscope (SEM-CL), Differential-Thermal Analyses (DTA), Thermogravimetry (TG), Thermoluminescence (TL), Radioluminescence (RL) and High Resolution Spectra Thermoluminescence (3DTL), to gain an overview of the spectral emissions, the defect linkages were modified by heating from room temperature (RT) up to 500 °C. Substitutional transition elements are probably responsible for the spectral emission bands from 500 nm to 800 nm and hydrous molecules from 300 nm to 400 nm. DTA–TG analyses performed on little chips, to preserve the fiber interfaces coherence, exhibit minor endothermic peaks attributed to outflow of water groups in fiber interfaces. Both, CL and RL curves show common spectral positions but UV–blue and red emission intensities are counterbalanced since electron irradiation reduces the UV–blue emissions while X-irradiation increases them. The TL curves show a top thermal limit at 300 °C for the 300–400 nm TL emissions which become irreversibly destroyed, whereas the longer wavelength region emits at higher temperature. The non-reversible changes observed in the 320 nm and 360 nm bands during the spectra 3DTL emission could be linked with non-bridging oxygen defects, protons and hydroxyl groups and the red emissions to the 4G (4T1g)–6S Mn2+ ion transition. Following assignations and similar spectral CL patterns of Russian Strontianite samples, the emission-defect assignments: Dy3+ 480 nm; Tb3+ 540 nm; Dy3+ 580 nm and Sm3+ 640 nm cannot be disregarded.  相似文献   

2.
We present a strategy to synthesize porous BaSnO3 hollow architectures with that were 150-300 nm in diameter and 1.5-5 μm in length using precursor of BaCO3@SnO2 nanorods prepared by hydrothermal treatment. BaCO3@SnO2 nanorods, consisting of a BaCO3 core and a SnO2 shell, could be used effectively for the solid-state synthesis of polycrystalline BaSnO3 powder at 800 °C (lower than convention for BaCO3 and SnO2 mixtures). The core/shell structure of the precursor could play a role as a structural directing template for preparing BaSnO3 hollow architectures during the calcination process. The X-ray diffractometer (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) are employed to characterize the structures and morphologies. When applied to DSSC, the porous BaSnO3 hollow architectures exhibit distinct photovoltaic effect.  相似文献   

3.
A novel manganese coordination polymer [Mn(Pht)(H2O)]n as a precursor was obtained by chemical precipitation involving an aqueous solution of anhydrous manganese acetate and phthalate anion as a potential O-banded ligand. Fourier transform infrared (FT-IR) results proved that phthalate anions coordinate to metal cations as a chelating bidentate ligand, making polymeric structure. The Mn2O3 nanostructures have been prepared via thermal decomposition of as-prepared manganese phthalate polymers as precursor in the presence of oleic acid (OA) and triphenylphosphine (TPP) as a stabilizer and capping. Different approaches such as FT-IR, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to characterize the products. TEM images and XRD analysis indicated that the as-synthesized chain-like Mn2O3 has a crystal phase of cubic syngony with a mean size of ∼40 nm.  相似文献   

4.
A novel flower-shaped Bi2O3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi2O3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi2O3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.  相似文献   

5.
Pure Li6CaB3O8.5 and Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) materials were prepared by a solution combustion synthesis method. The phase of synthesized materials was determined using the powder XRD and FTIR. The synthesized materials were investigated using spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 307 and 268 nm, respectively. The dependence of the emission intensity on the Pb2+ concentration for the Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) was studied and observed that the optimum concentration of Pb2+ in phosphor is 0.01 mol. The Stokes shift of the synthesized phosphor was calculated to be 4740 cm-1.  相似文献   

6.
A visible light-driven photocatalyst, C-doped Zn3(OH)2V2O7, prepared by a hydrothermal method was studied. The as-prepared catalyst was characterized by SEM, XRD, DRS, and XPS, and exhibited efficient photocatalytic activity in the degradation of methylene blue (MB) under visible-light irradiation. Besides decoloring, the decomposition of MB was also observed, further demonstrating the performance of the photocatalyst. The carbon existing on the surface of Zn3(OH)2V2O7 nanorods was free and in carbide form. Dye degradation followed first-order kinetics, and was explained on the basis of the Langmuir-Hinshelwood mechanism.  相似文献   

7.
Nanocrystalline Co3O4 powders were synthesized by aerosol flame synthesis (AFS) method for the anode of lithium ion batteries and the basic electrochemical properties were investigated. The effects of synthesis conditions and heat-treatment temperature on the morphology, crystallite size and electrochemical properties were investigated. As-prepared soot contained Co3O4, CoO and Co(OH)2, which were eventually converted into cubic spinel Co3O4 by post heat treatment. The as-prepared particle size was in the range of 10-30 nm and grew to 50-85 nm by the heat treatment. With growing particle size and improved crystallinity, charge-discharge capacity and cycle performance were improved and the discharge capacity of the powder heat-treated at 700 °C was 571 mAh/g after 30 cycles, which was better than Co3O4 powder reported in the previous literature.  相似文献   

8.
The magnetic properties of trigonal Nd0.9Dy0.1Fe3(BO3)4 substituted compound with the competitive Nd-Fe and Dy-Fe exchange interactions have been investigated. It has been shown that in Nd0.9Dy0.1Fe3(BO3)4 a spontaneous spin-reorientation transition from an ease-axis state to an easy-plane occurs near 8 K. Anomalies of the magnetization curves are observed in a spin-flop transition induced by the magnetic field B‖c. The calculations were performed using a molecular-field approximation and a crystal-field model for the rare-earth subsystem. Extensive experimental data on the magnetic properties of Nd0.9Dy0.1Fe3(BO3)4 have been interpreted and good agreement between theory and experiment has been achieved using the obtained theoretical dependences.  相似文献   

9.
A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3 has been carried out using FPLAPW method with density-functional theory. The calculated results suggest that both compounds are nonmagnetic (NM) metal in cubic structures at room temperature, and they exhibit very similar band structure and electronic properties except more extend Mo 4d orbitals than Cr 3d electronic states. However, the electronic structure and magnetic properties exhibit remarkable differences between them in the low temperature phases. SrCrO3 is with a C-AFM ground state with magnetic moment of 1.18μB/Cr in the tetragonal structure, while SrMoO3 is with a NM ground state in the orthorhombic structure. It is assumed that the extend 4d orbitals may be the reason which results in NM solution at low temperature phase of SrMoO3.  相似文献   

10.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

11.
Lithium-rich layered oxide Li1.2Ni0.16Co0.08Mn0.56O2 can be referred as a crystalline mixture of Li2MnO3 and LiNi0.4Co0.2Mn0.4O2 at equal molar ratio. In the paper, the solid state reaction of M(AC)2·4H2O (M = Mn, Co and Ni) and LiOH·H2O has been performed to obtain nanocrystalline Li1.2Ni0.16Co0.08Mn0.56O2 using a small molecular organic acid (i.e., oxalic acid (OA), citric acid (CA) or tartaric acid (TA)) as additive. The introduction of organic acids can help to improve the layered structure and inhibit the particle growth of Li1.2Ni0.16Co0.08Mn0.56O2, and the different organic acids exert distinct influences on the structural and electrochemical properties of Li1.2Ni0.16Co0.08Mn0.56O2. In detail, the nanoparticles obtained in the presence of OA have the smallest average size of 50–150 nm, which correspondingly exhibit the highest initial discharge capacity of 267.52 mAh g−1 at 0.1C and the best high-rate capability (e.g., 152.22 mAh g−1, 5C) when applied as a lithium ion battery cathode. Furthermore, the active substance obtained from TA shows the best cycling stability and a discharge capacity of 202.42 mAh g−1 can be retained after 50 cycles at 0.5C.  相似文献   

12.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

13.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

14.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

15.
We focused on the effects of the inorganic acid HNO3 on the gas-sensing properties of nanometer SnO2 and prepared the powders via a dissolution-pyrolysis method. Furthermore, the powders were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectra (EDS). Several aspects were surveyed, including the calcining temperature, concentration of nitric acid and the working temperature. The results showed that the gas response of 3 wt% HNO3-doped SnO2 powders (calcined at 500 °C) to 10 ppm Cl2 reached 316.5, at the working temperature 175 °C. Compared with pure SnO2, appropriate HNO3 could increase the gas sensitivity to Cl2 gas more significantly.  相似文献   

16.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

17.
采用金属有机分解法(MOD)在石英衬底上沉积了SrTiO3薄膜。所制备的薄膜是晶格常数为a=b=c=3.90?的多晶结构。通过测量190—1100nm波段内的透射光谱,采用包络方法计算了薄膜的光学常数(折射率n和消光系数k)。结果表明,采用MOD方法制备的薄膜的折射率大于采用射频磁控溅射、溶胶—凝胶和化学气相沉积方法制备的薄膜的折射率;薄膜的折射率色散关系满足单振子模型,其中振子强度S0为0.88′1014m-2,振子能量E0为6.40eV;薄膜的禁带宽度为3.68eV。  相似文献   

18.
Nano-sized NiFe2−xLaxO4 ferrites (x=0.00, 0.01, 0.02, 0.03, 0.04, 0.5, 0.07 and 0.09) were synthesized for the first time by using metal nitrate and egg-white extract in aqueous medium. The ferrites were characterized by DTA-TG, XRD, TEM, FT-IR and VSM techniques. The thermal decomposition behavior revealed that the precursors were completely decomposed at about 420 °C. TEM image shows agglomerated nanoparticles with crystallite sizes agrees well with that estimated by XRD measurement. XRD patterns show a secondary phase of LaFeO3 besides the cubic structure of the La-substituted ferrites. The lattice parameters, X-ray density and crystallite size were found to increase with the increasing La content. The VSM measurement exhibited a ferromagnetic property for all the samples at room temperature. With increasing La, Ms was found to decrease while Hc increased. The decrease in the saturation magnetization is attributed to the paramagnetic properties of lanthanum, which prefer to substitute iron present in the octahedral sites. The increase in the coercivity is due to either the stronger magnetocrystalline anisotropy induced by La substitution or the change in the crystallite size.  相似文献   

19.
This paper reports the growth and spectroscopic characterization of Er3+:Sr3Y(BO3)3 crystal. Er3+:Sr3Y(BO3)3 crystal with dimensions up to ∅20×35 mm3 has been grown by Czochralski method. The polarized spectroscopic properties of Er3+:Sr3Y(BO3)3 crystal were investigated. Based on the Judd-Ofelt theory, the effective intensity parameters Ωt were obtained: Ω2=1.71×10−20 cm2, Ω4=1.39×10−20 cm2, Ω6=0.74×10−20 cm2 for π-polarization, and Ω2=1.77×10−20 cm2, Ω4=1.44×10−20 cm2, Ω6=0.65×10−20 cm2 for σ-polarization. The emission cross-section σem was calculated to be 4.75×10−21 cm2 for π-polarization at 1536 nm and 6.30×10−21 cm2 for σ-polarization at 1537 nm. The investigated results showed that Er3+:Sr3Y(BO3)3 crystal may be regarded as a potential laser host material for 1.55 μm IR solid-state lasers.  相似文献   

20.
Electronic structure and magnetic properties of perovskite EuZrO3 have been investigated using the ab initio density-functional calculations with local spin density approximation (LSDA) and LSDA+U methods. The results that are obtained reveal that the antiferromagnetic G-type arrangement is more stable than other possible configurations. The ground G-AFM state shows the insulator property with an energy gap of about 0.27 eV at U=0 eV. It is found that the energy gap strongly depends on the correction potential parameter of U due to the strong interaction of the f electrons of Eu in EuZrO3. The spin magnetic moment of Eu ions is predited to be 6.82μB, which is in well agreement with the experimental result of 6.87μB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号