首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

2.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

3.
The structural, dielectric and magnetic properties of single crystalline Ba1−xBixFe0.3Zr0.7O3−δ (x=0.0-0.29) thin films have been studied. The pseudotetragonal epitaxial thin films were obtained by pulsed laser-beam deposition (PLD) on (0 0 1) SrTiO3 (STO) single-crystal substrates. The Bi substitution for the Ba ions up to an extent of x=0.18 caused a slight improvement in the leakage current properties, as well as an enhancement of the apparent dielectric constant. The saturation magnetization of the films was significantly decreased following Bi substitution. These changes were thought to be related to the increase in oxygen deficiencies in the films. The effect of the Bi substitution on the dielectric and magnetic properties was analyzed in conjunction with the change in valence value of the Fe ions.  相似文献   

4.
Some ceramic samples of Pb1−xYx(Fe0.5Nb0.5)1−x/4O3 (PYFN) (0.00≤x≤0.08) were synthesized by a mixed oxide route. X-ray diffraction patterns of all the above samples confirm the formation of single phase material crystallizing in monoclinic structure. Dielectric properties (εr and tan δ) were analyzed in a wide temperature (30-350 °C) and frequency range (100 Hz-1 MHz). Ferroelectric properties of these compounds were confirmed from polarization (P-E hysteresis loop) measurements at room temperature. All the room temperature hysteresis loops of PYFN ceramics were well simulated using the ferroelectric capacitor model. Yttrium substitution resulted in notable enlargement of room temperature remnant polarization (2Pr). The 2Pr of PYFN (x=0.02) reaches to a large value (23 μC/cm2), which is nearly 5 times greater than that of PFN ceramic (4.6 μC/cm2). All the compounds exhibits negative temperature coefficient of resistivity (NTCR) type behavior as that of semiconductors. Dc conductivity (estimated via bulk resistivity) variation with temperature of all the samples follows Arrhenius type of electrical conductivity.  相似文献   

5.
Present study reports the structural, optical and dielectric properties of Ni substituted NdFe1−xNixO3 (0 ≤ x ≤ 0.5) compounds prepared through the ceramic method. X-ray diffraction (XRD) confirmed an orthorhombic crystal structure of all the samples. Both unit cell volume and grain size were found to decrease with an increase in Ni concentration. Morphological study by Scanning electron microscope (SEM) shows less porosity with Ni substitution in present system. From UV–vis spectroscopy, the optical band gap was found to increase with Ni doping. This observed behavior was explained on the basis of reduction in crystallite size, unit cell volume and its impact on the crystal field potential of the system after Ni substitution. The dielectric properties (?′ and tanδ) as a function of frequency or temperature, and the ac electrical conductivity (σac) as a function of frequency have been studied. Hopping of charge carriers between Fe2+ → Fe3+ ions and Ni2+ → Ni3+ ions are held responsible for both electrical and dielectric dispersion in the system. Wide optical band gap and a very high dielectric constant of these materials promote them to be a suitable candidate for memory based devices in electronic industry.  相似文献   

6.
Epitaxial (001)-oriented PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition. Local piezoelectric investigations performed by piezoelectric force microscopy show a dual slope for the piezoelectric coefficient. A piezoelectric coefficient of 3 pm/V was observed at voltages up to 0.8 V. However, at voltages above 0.8 V, there is a steep increase in piezoelectric coefficient mounting to 23.2 pm/V. This nonlinear piezoelectric response was observed to be irreversible in nature. In order to better understand this nonlinear behavior, voltage dependent dielectric constant measurements were performed. These confirmed that the piezoelectric non-linearity is indeed a manifestation of a dielectric non-linearity. In contrast to classical ferroelectric systems, the observed dielectric non-linearity in this relaxor material cannot be explained by the Rayleigh model. Thus the dielectric non-linearity in the PST films is tentatively explained as a manifestation of a percolation of the polar nano regions.  相似文献   

7.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

8.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

9.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

10.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

11.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

12.
The effect of epitaxial strain on La0.5Ca0.5MnO3 films of various thicknesses grown on SrTiO3, SrLaAlO4, and SrLaGaO4 substrates is studied by Raman spectroscopy, magnetic, and resistivity measurements. The transport and magnetic properties as well as Raman spectra of the films are affected by epitaxial strains. The energy of the Ag(2) mode and the tilting angle of the MnO6 octahedra is affected by the strain imposed by the substrate. In the spectra of the films deposited on the (1 0 0) SrTiO3 substrate strong Jahn-Teller (JT) modes appear, which couple with charge-ordering. In all other films these modes are suppressed and no additional Raman lines are present at low temperatures contrary to the bulk compound. The low frequency continuum scattering decreases at low temperatures indicating a coupling with both the charge and orbital transitions. Comparison of the Raman spectra with the magneto-transport properties suggests an interpretation in terms of a strain induced phase separation between ferromagnetic metallic and antiferromagnetic insulating states.  相似文献   

13.
Cation deficient polycrystalline Tb1−xMnO3 (x= 0.05, 0.10) and TbMn1−yO3 (y =0.05, 0.10) samples were fabricated by conventional solid-state reaction. The complex dielectric properties of the cation deficient TbMnO3 were investigated as the function of temperature (77 K≤T≤350 K) and frequency (100 Hz≤ f≤ 200 kHz) separately. Compared to the parent TbMnO3, the cation deficient TbMnO3 samples exhibit not only high dielectric constant but also low dissipation factor. Nyquist plots of complex impedance show that the dielectric properties originate from two main relaxation sources, i.e. bulk contributions and grain boundary effects.  相似文献   

14.
BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 (BZT) thin films were deposited on Pt/Ti/LaAlO3 (1 0 0) substrates by radio-frequency magnetron sputtering, respectively. The films were further annealed at 800 °C for 30 min in oxygen. X-ray diffraction θ-2θ and Φ-scans showed that BaZr0.1Ti0.9O3 films displayed a highly (h 0 0) preferred orientation and a good cube-on-cube epitaxial growth on the LaAlO3 (1 0 0) substrate, while there are no obvious preferential orientation in BaZr0.2Ti0.8O3 thin films. The BaZr0.1Ti0.9O3 films possess larger grain size, higher dielectric constant, larger tunability, larger remanent polarization and coercive electric field than that of BaZr0.2Ti0.8O3 films. Whereas, BaZr0.1Ti0.9O3 films have larger dielectric losses and leakage current density. The results suggest that Zr4+ ion can decrease dielectric constant and restrain non-linearity. Moreover, the enhancement in dielectric properties of BaZr0.1Ti0.9O3 films may be attributed to (1 0 0) preferred orientation.  相似文献   

15.
The orientation-dependent dielectric properties of barium stannate titanate (Ba(Sn0.15Ti0.85)O3, BTS) thin films grown on (1 0 0) LaAlO3 single-crystal substrates through sol-gel process were investigated. The nonlinear dielectric properties of the BTS films were measured using an inter-digital capacitor (IDC). The results show that the in-plane dielectric properties of BTS films exhibited a strong sensitivity to orientation. The upward shift of Curie temperature (Tc) of the highly (1 0 0)-oriented BTS thin films is believed to be attributing to a tensile stress along the in-plane direction inside the film. A high tunability of 47.03% was obtained for the highly (1 0 0)-oriented BTS films, which is about three times larger than that of the BTS films with random orientation, measured at a frequency of 1 MHz and an applied electric field of 80 kV/cm. This work clearly reveals the highly promising potential of BTS films for application in tunable microwave devices.  相似文献   

16.
A series of Pr0.5Sr0.5MnO3 (PSMO) films with various thickness were epitaxially grown on substrates of (0 0 1)-oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT), LaAlO3 (LAO) and SrTiO3 (STO), and (0 1 1)-oriented STO using pulse laser deposition. Influence of epitaxial growth on phase competition was investigated. A ferromagnetic metal to antiferromagnetic insulator (FMM-AFI) transition upon cooling is present in both largely compressed situations deposited on LAO (0 0 1) and tensile cases deposited on STO (0 0 1) but absent in little strained films grown on LSAT (0 0 1), indicating that the antiferromagnetic insulating state is favored by strains. On the other hand, the 400 nm films deposited on (0 1 1)-oriented STO as well as LAO substrates show FMM-AFI transition. These results reveal that both the orientation of epitaxial growth and substrate-induced strain affect the FMM-AFI transition.  相似文献   

17.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

18.
The effect of Ba(La)TiO3 doping on the structure and magnetotransport properties of La2/3Sr1/3MnO3(LSMO)/xBa(La)TiO3 (x=0.0, 1.0, 5.0 mol%) have been investigated. The X-ray diffraction patterns and microstructural analysis show that BaTiO3 and LSMO phases exist independently in BaTiO3-doped composites. The metal-insulator transition temperature (TMI) decreases whereas the maximum resistivity increases very quickly by the increase of BaTiO3 doping level. The partial substitution of Ba by La(0.35 mol%) results in a decrease in resistivity of LSMO/xBa(La)TiO3 composites. Magnetoresistance of BaTiO3-doped composites decreases monotonously in the temperature range 200-400 K in a magnetic field of 5 T, which is completely different from that of LSMO compound. The value of MR decreases at low field (H<1 T) and increases at high fields (H>1 T) with increasing the BaTiO3 doping level at low temperatures below 280 K. These investigations reveal that the magnetotransport properties of LSMO/xBa(La)TiO3 composites are dominated by spin-dependent scattering and tunneling effect at the LSMO/BaTiO3/LSMO magnetic tunnel junction.  相似文献   

19.
20.
HoMnO3 films were grown on pure and Nb-doped SrTiO3 (001) substrates by pulsed laser deposition. The films grew epitaxially with the c-axis along the substrate normal. Varying the deposition temperature between 650 and 850 °C did not significantly affect the structural and magnetic properties of the films, whereas growth in oxygen partial pressures below 0.01 mbar lead to a degradation of the structural properties. Some of the films had a ferromagnetic-like magnetic phase transition at about 45 K, probably related to Mn3O4 precipitates; this magnetic response was isotropic. The Ho sublattice was found to be paramagnetic down to 5 K, but showing a pronounced anisotropy with the c-axis being the hard axis. The films showed a distinct dielectric anomaly at 16 K that depended on voltage and slightly on frequency in the range between 1 kHz and 1 MHz. The magnetoelectric effect was large with an in-plane field of 8 T suppressing the dielectric anomaly completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号