首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ni/CeO2-ZrO2-A12O3 catalyst with different A12O3 and NiO contents were prepared by hydrothermal synthesis method. The catalytic performance for CO2 reforming of CH4 reaction, the interaction among components and the relation between Ni content and catalyst surface basicity were investigated. Results show that the interaction between NiO and A12O3 is stronger than that between NiO and CeO2-ZrO2. The addition of A12O3 can prevent the formation of large metallic Ni ensembles, increase the dispersion of Ni, and improve catalytic activity, but excess A12O3 causes the catalyst to deactivate easily. The interaction between NiO and CeO2 results in more facile reduction of surface CeO2. The existence of a small amount of metallic Ni can increase the number of basic sites. As metallic Ni may preferentially reside on the strong basic sites, increasing Ni content can weaken the catalyst basicity.  相似文献   

2.
Using TiO2 and Ti0.5Zr0.5O2 as carriers, the CuO/TiO2 and CuO/Ti0.5Zr0.5O2 catalysts were prepared by the impregnation method with Cu(NO3)2 as active component. The catalytic activities in NO CO reaction were investigated using a microreactor-GC system, and structure and reducibility of catalysts were characterized by means of physical adsorption, TPR, XRD, NO-TPD technologies. It was found that the activity of CuO/Ti0.5Zr0.5O2 catalyst was higher than that of CuO/TiO2, probably due to the large specific surface area of Ti0.5Zr0.5O2 that played an important role in NO CO reaction.  相似文献   

3.
The induction behavior in CO2 hydrogenation was studied by varying the reaction temperature to investigate the adaptation of the Cu/ZnO/Al2O3 catalyst to the temperature change,The results indicated that a used catalyst had a tendency to keep the last running state in new reaction conditions for MeOH formation,and that this tendency was related to the difference in Cu/Cu^n ration caused by CO2 and CO produced at different reaction temperatures,However,the reverse water-gas shift reaction (BWGS) induced at four temperatures was completely different from that of methanol synthesis,It implied that the two so-called competitive reactions in CO2 H2,RWGS and methanol synthesis,have different, active centers.  相似文献   

4.
Gas phase selective catalytic oxidation of toluene to benzaldehyde was studied on V2O5-Ag2O/η-Al2O3 catalyst prepared by impregnation. The catalyst was characterized by XRD, XPS, TEM,and FT-IR. The catalytic results showed that toluene conversion and selectivity for benzaldehyde on catalyst sample No.4 (V/(V Ag)=0.68) was higher than other catalysts with different V/Ag ratios. This was attributed to the higher surface area, larger pore volume and pore diameter of the catalyst sample No.4 than the other catalysts. The XRD patterns recorded from the catalyst before and after the oxidation reaction revealed that the new phases were developed, and this suggested that silver had entered the vanadium lattice. XPS results showed that the vanadium on the surface of No.4 and No.5 sample was more than that in the bulk, thus forming a vanadium rich layer on the surface. It was noted that when the catalyst was doped by potassium promoter, the toluene conversion and selectivity for benzalde hydewere higher than those on the undoped catalyst. This was attributed to the disordered structure of V2O5 lattice of the K-doped catalyst and a better interfacial contact between the particles.  相似文献   

5.
The effect of vanadium addition to CU/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2O3 catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240℃, 3600 h-1 and a molar ratio of H2 to CO2 of 3:1. The results of XRD and TPR characterization demonstrated that the addition of V enhanced the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of CU-V/γ-Al2O3 binary catalyst.  相似文献   

6.
The decomposition of methane on Ni/a-Al2O3 modified by La2O3 and CeO2 with differ-ent contents has been investigated and the ralationship between methane decomposition and removal of carbon by CO2 over these catalyst has also been studied by pulse-chromatography. The catalysts were characterized by TPR and XRD. It was shown that Ni/a-Al2O3 could be promoted by adding La2O3, and the carbon species produced over this catalyst was activated and eliminated by CO2. But CeO2 would suppress the decomposition of methane over Ni crystallite. Both La2O3 and CeO2 can inhibit aggregation of the Ni particles. Decomposition of methane over the Ni-based catalysts is structure sensitive to a certain extent.  相似文献   

7.
Because of the ever-increasing consumption of crude oil. the role played by the natural gas as a raw material has become more and more important in chemical industry and the potential of methane used as a source for the production of ethylene has attracted much attention. In this paper, the LiCl-B2O3/MnO2 and Li2SO4-MnxOy/TiO2 catalysts for Oxidative Coupling of Methane (OCM) have been studied, and the results show that the catalysts exhibit high activity and selectivity, Furthermore. The influence of the components in the catalyst and the reaction conditions on OCM performance has been studied and a possible active new component, cubic Li4B7O12Cl. has been found.  相似文献   

8.
The possibility of synthesizing acetic acid from CH4 and CO2 in the presence of O2 over a V2O5-PdCl2/Al2O3 catalyst has been explored. The result shows that it is feasible in catalyzing a direct conversion of CH4, CO2 and O2 to acetic acid. It is concluded that both CO2 and O2 are involved in the formation of acetic acid.  相似文献   

9.
The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120℃and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence.  相似文献   

10.
Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst.  相似文献   

11.
In the reaction of methane and carbon dioxide to C2 hydrocabons under non-equilibrium plasma, methane conversion was decreased,but selectivity of C2 hydroxarbons was increased when using La2O3/γ-Al2O3 as catalyst. So the yield of C2 hydrocarbons was higher than using plasma alone. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 yield of 18.1%. The distribution of C2 hydrocarbons changed when Pd-La2O3/γ-Al2O3 was used as catalyst,the major C2 product was ethylene.  相似文献   

12.
Ni/α-Al2O3 catalysts were found to be active in the temperature range 600~900 ℃ for both CO2 reforming and partial oxidation of methane. The effects of Ni loading, reaction temperature and feed gas ratio for the combination of CO2 reforming and partial oxidation of CH4 over Ni/α-Al2O3 were investigated. Catalysts of xwt%Ni/α-Al2O3 (x = 2.5, 5, 8 and 12) were prepared by wet impregnating the calcined support with a solution of nickel nitrate. XRD patterns and activity tests have verified that the 5wt%Ni/α-Al2O3 was the most active catalyst, as compared with the other prepared catalyst samples. An increase of the Ni loading to more than 5 wt% led to a reduction in the Ni dispersion. In addition, by combining the endothermic carbon dioxide reforming reaction with the exothermic partial oxidation reaction, the loss of catalyst activity with time on stream was reduced with the amount of oxygen added to the feed.  相似文献   

13.
The Ru3(CO)12/PEDPA complex was firstly applied in the CO selective reduction of 4-propylthio-2-nitroaniline.The effects of reaction temperature,the pressure of CO and concentration of catalyst on the reduction were investigated.Under the optimum conditions of T=140℃, Pco=5.0MPa and substrate/catalyst=300(molar ratio),the conversion and selectivity were 70% and 98%,respectively.After simple phase separation,the catalyst could be recycled.  相似文献   

14.
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM)have been investigated over ternary and binary metal oxide catalysts.The catalysts are prepared by doping MgO-and CeO2-based solids with oxides from alkali(Li2O),alkaline earth (CaO),and transition metal groups (WO3 or MnO).The presence of the peroxide (O2^2-)active sites on the Li2O2,revealed by Raman spectroscopy,may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts.The high reducibility of the CeO2 catalyst,an important factor in the CO2-OCM catalyst activity,may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobitity and oxygen vacancies in the CeO2 catalyst.raman and Fourier Transform Infra Red (FT-IR)spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks carresponding to the buld crystalline structures of Li2O,CaO,WO2 and MnO are detected.The performance of 5%MnO/15?O/CeO2 catalyst is the most potential among the CeO2-based catalysts,although lower than the 2%Li2O/MgO catalyst.The 2%Li2O/MgO catalyst showed the most promising C2 hydrocarbons selectivity and yield at 98.0%and 5.7%,respectively.  相似文献   

15.
Destructive tests of the catalyst was carried out to study the effect of temperature on the catalytic activity of CO coupling to diethyl oxalate (DEO) over a Pd-Fe/Al2O3 catalyst. It was found that a temperature jump could cause the deactivation of the Pd-Fe/α-Al2O3 catalyst. The catalyst deactivated at different temperatures has different characteristics. After deactivation the crystal structure of α-Al2O3 did not change, but the Pd particle size was enlarged. Most of the Pd^0 were oxidized to Pd^2 . and Fe^2 was oxidized to Fe^3 on the surface of the deactivated catalyst. The catalyst could be regenerated, but its original activity could not be recovered completely.  相似文献   

16.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalorimetric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-Al2O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25?O2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2, γ-Al2O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

17.
A WC-supported S2O8^2-/ZrO2(PSZ) catalyst was prepared and characterized by means of XRD, BET, FTIR and XPS. The isomerization of n-pentane over the catalyst was investigated as well. The results show that the skeletal isomerization and the crack of n-pentane proceed simultaneously on WC-supported S2O8^2-/ZrO2 catalyst. The addition of tungsten carbide showed a significant enhancement in the activity and stability of the catalyst for n-pentane isomerization. The catalyst showed evidently a better activity than S2O8^2-/ZrO2 supported by Pt and WO3. The results can be interpreted by the existence of the tungsten oxycarbide compound(WCxOy) with carbidic, oxide and acidic sites.  相似文献   

18.
In this work, CO2 methanation has been investigated over Ru-based catalysts. The effects of promoters on the activity, selectivity and reduction properties of the Ru/sepiolite catalyst were analyzed by kinetic and thermodynamic methods. The catalysts were characterized by means of TPD. and the results revealed that the addition of Mo. Mn or Co improved tile properties of the Ru/sepiolite catalyst.The effects of promoters could affect the change of enthalpy,entropy and chemical potential.  相似文献   

19.
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may  相似文献   

20.
K_2O and MnO are two kinds of necessary promoters to theselective production of light alkenes from CO hydrogenation over silicalite-2(Si-2) zeolite supported Fe catalyst. The addition of both K_2O and MnOpromoters into Fe/Si-2 catalyst leads to a remarkable increase in the COconversion and the selectivity to light oletins. Silicalite-2 zeolite as Fe-MnOcatalyst support can suppress the formation of α-Fe_2MnO_3 or/andα-Fe_(2-y)Mn_yO_3 as Well as α-Fe_2O_3 and/or α-Mn_2O_3, being favorable for(?)ncreasing the dispersion of active metal component. So MnO can promotethe reduction of Fe~(3-) and enhance the capacity of CO adsorption, which canimprove the activity of the activity of the catalyst for CO hydrogenation. While K_2Opromoter is unfavorable for reduction of Fe~(3-) to some degree with formation of Fe~(2-) as a new species after reduction. However, K_2O promoter can enhance the capacity and strength of CO adsorption greatly.So K_2O can alsoimprove the activity of catalyst for CO hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号