首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李锐  刘腾  陈翔  陈思聪  符义红  刘琳 《物理学报》2018,67(19):190202-190202
金属多层膜调制周期下降到纳米级时,其力学性质会发生显著改变. Cu-Ni晶格失配度约为2.7%,可以形成共格界面和半共格界面,实验中实现沿[111]方向生长的调制周期为几纳米且具有异孪晶界面结构的Cu/Ni多层膜,其力学性质发生显著改变.本文采用分子动力学方法对共格界面、共格孪晶界面、半共格界面、半共格孪晶界面等四种不同界面结构的Cu/Ni多层膜进行纳米压痕模拟,研究压痕过程中不同界面结构类型的形变演化规律以及位错与界面的相互作用,获取Cu/Ni多层膜不同界面结构对其力学性能的影响特征.计算结果表明,不同界面结构的样品在不同压痕深度时表现出的强化或软化作用机理不同,软化机制主要是由于形成了平行于界面的分位错以及孪晶界面的迁移,强化机制主要是由于界面对位错的限定作用以及失配位错网状结构与孪晶界面迁移时所形成的弓形位错之间的相互作用.  相似文献   

2.
周耐根  周浪  杜丹旭 《物理学报》2006,55(1):372-377
用分子动力学方法对5%负失配条件下面心立方晶体铝薄膜的原子沉积外延生长进行了三维模拟.铝原子间的相互作用采用嵌入原子法(EAM)多体势计算.模拟结果再现了失配位错的形成现象.分析表明,失配位错在形成之初即呈现为Shockley扩展位错,即由两个伯格斯矢量为〈211〉/6的部分位错和其间的堆垛层错组成,两个部分位错的间距、即层错宽度为1.8 nm,与理论计算结果一致;外延晶体薄膜沉积生长中,位错对会发生滑移,但其间距保持稳定.进一步观察发现,该扩展位错产生于一种类似于“局部熔融-重结晶”的表层局部无序紊乱- 关键词: 失配位错 外延生长 薄膜 分子动力学 铝  相似文献   

3.
周耐根  周浪 《物理学报》2005,54(7):3278-3283
运用分子动力学方法对负失配条件下的外延铝簿膜中失配位错的形成进行了模拟研究.所采 用的原子间相互作用势为嵌入原子法(EAM)多体势.模拟结果显示:在500K下长时间静态弛豫 ,表面和内部结构完整的外延膜在9—80原子层厚度范围内(约为其热力学临界厚度的3—40 倍)均不形成失配位错,而在薄膜表面预置一个单原子层厚、三个原子直径大小的凸台或凹 坑时,失配位错则能够在15个原子层厚的外延膜上迅速形成:在动态沉积生长条件下,表面 自然形成凹凸,初始厚度为9个原子层厚的外延膜在沉积生长中迅速形成失配位错.在三种条 件下,所形成的位错均为伯格斯矢量与失配方向平行的全刃位错.分析发现:在压应力作用 下,表面微凸台诱发了其侧薄膜内部原子的挤出,造成位错形核;而表面微凹坑则直接因压 应力作用形成了一个表面半位错环核. 关键词: 外延薄膜 失配位错 分子动力学 铝  相似文献   

4.
使用分子动力学方法,采用嵌入原子势(EAM),在0K下模拟了面心立方金属Cu单晶的刃型位错,研究了刃型位错产生对晶体体积的影响.模拟结果表明,无论使用推入还是抽出原子层的方法获得刃型位错,平衡状态时刃型位错的存在使晶体体积增大.  相似文献   

5.
采用X射线衍射和X射线光电子能谱实验手段对不同厚度的NiTi薄膜相变温度的变化进行了分析.结果表明在相同衬底温度和退火条件下,3?μm厚度的薄膜晶化温度高于18?μm厚度的薄膜.衬底温度越高,薄膜越易晶化,退火后薄膜奥氏体相转变温度As越低.薄膜的表面有TiO2氧化层形成,氧化层阻止了Ni原子渗出;膜与基片的界面存在Ti2O3和NiO.由于表面和界面氧化层的存在,不同厚度的薄膜内层的厚度也不同,因而薄膜越薄,Ni原子的含量就越高.Ni原子的含量的不同会影响薄膜的相变温度. 关键词: NiTi合金薄膜 X射线衍射 相变 X射线光电子能谱  相似文献   

6.
构造了界面具有原子混合的硅锗(Si/Ge)单界面和超晶格结构.采用非平衡分子动力学模拟研究了界面原子混合对于单界面和超晶格结构热导率的影响,重点研究了界面原子混合层数、环境温度、体系总长以及周期长度对不同晶格结构热导率的影响.结果表明:由于声子的“桥接”机制,2层和4层界面原子混合能提高单一界面和少周期数的超晶格的热导率,但是在多周期体系中,具有原子混合时的热导率要低于完美界面时的热导率;界面原子混合会破坏超晶格中声子的相干性输运,一定程度引起热导率降低;完美界面超晶格具有明显的温度效应,而具有原子混合的超晶格热导率对温度的敏感性较低.  相似文献   

7.
α-Fe裂纹的分子动力学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
曹莉霞  王崇愚 《物理学报》2007,56(1):413-422
通过分子动力学方法,模拟了α-Fe裂纹的单轴拉伸实验中的形变过程.研究了不同晶体取向裂纹的形变特点和断裂机理,观察到各种形变现象,如位错形核和发射,位错运动,堆垛层错或孪晶的形成,纳米空洞的形成与连接等.计算结果表明,裂纹扩展是塑性过程和弹性过程相结合的过程,其中塑性过程表现为由裂尖发射的位错导致的原子切变行为,而弹性过程的发生则是由无位错区中的原子断键所导致.同时还研究了α-Fe裂纹的形变特点和断裂机理与温度场和应力场的依赖关系.  相似文献   

8.
HgCdTe外延薄膜临界厚度的理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
王庆学  杨建荣  魏彦锋 《物理学报》2005,54(12):5814-5819
基于在任意坐标系内应力与应变的关系、晶体弹性理论和位错滑移理论,研究了生长方向分别为[111]和[211]晶向,HgCdTe外延薄膜临界厚度与CdZnTe衬底中Zn组分和HgCdTe外延层中Cd组分的关系. 结果表明,HgCdTe外延薄膜临界厚度依赖于CdZnTe衬底中Zn组分和HgCdTe外延层中Cd组分的变化. 对于厚度为10μm,生长方向为[111]晶向的液相外延HgCdTe薄膜,要确保HgCdTe/CdZnTe无界面失配位错的前提条件,是CdZnTe衬底中Zn组分和HgCdTe外延层中Cd组分的波动必须分别在±0.225‰和±5‰范围内;而对于相同厚度,生长方向为[211]晶向的分子束外延HgCdTe薄膜,CdZnTe衬底中Zn组分和HgCdTe外延层中Cd组分的波动范围分别为±0.2‰和±4‰. 关键词: HgCdTe/CdZnTe 临界厚度 位错滑移理论 失配位错  相似文献   

9.
使用分子动力学方法,采用嵌入原子势(EAM),在0K下模拟了面心立方金属Cu单晶的刃型位错,研究了刃型位错产生对晶体体积的影响.模拟结果表明,无论使用推入还是抽出原子层的方法获得刃型位错,平衡状态时刃型位错的存在使晶体体积增大.  相似文献   

10.
利用脉冲激光溅射(PLD)和分子束外延(MBE)方法制备了超薄膜系统 Co/Pd/Cu(100).脉冲激 光溅射生长的单原子Pd层呈现了很好的二维生长模式.在这个Pd表面上,分子束外延生长的C o层直至12个原子层都表现了层-层生长模式.利用俄歇电子谱(AES)和低能电子衍射(LEED)研 究了该系统的表面结构.利用低温磁光克效应(MOKE)研究了系统的磁学性质.结构研究表明, Co层由于面内晶格失配应力而具有一个四方正交结构;与对比样品Co/Cu(100)的比较研究说 明Pd层的存在强烈地改善了Co膜的起始生长模式和结构.磁光克效应测量表明,Pd层的存在 改变了Co层的磁学性质. 关键词: 薄膜的磁性质 组织与形貌 界面磁性  相似文献   

11.
We have performed a transmission electron microscopy study, using weak beam imaging, of the interface dislocation arrays that form initially at the (001) Ni–Cu interface during coherency loss. Interface dislocations were absent in the 2.5?nm Ni/100?nm Cu bilayers, but were present in the 3.0?nm Ni samples, indicating that the critical Ni film thickness for coherency loss is between 2.5 and 3?nm. The key features of the interface dislocation structure at the onset of coherency loss are: (i) the majority of interface dislocations are 60° dislocations, presumably formed by glide of threading dislocations in the coherently stressed Ni layer, and have Burgers vector in the {111} glide plane; (ii) the interface contained approximately 5% Lomer edge dislocations, with Burgers vector in the {001} interface plane, and an occasional Shockley partial dislocation and (iii) isolated segments of interface dislocations terminating at the surface are regularly observed. Possible mechanisms that lead to these dislocation configurations at the interface are discussed. This experimental study shows that near the critical thickness, accumulation of interface dislocations occurs in a somewhat stochastic fashion with favourable regions where coherency is first lost.  相似文献   

12.
N. M. Ghoniem  X. Han 《哲学杂志》2013,93(24):2809-2830
Line integral forms for the elastic field of dislocations in anisotropic, multilayer materials are developed and utilized in Parametric Dislocation Dynamics (PDD) computer simulations. Developed equations account for interface image forces on dislocations as a result of elastic modulus mismatch between adjacent layers. The method is applied to study dislocation motion in multilayer thin films. The operation of dislocation sources, dislocation pileups, confined layer slip (CLS), and the loss of layer confinement are demonstrated for a duplex Cu/Ni system. The strength of a thin film of alternating nanolayers is shown to increase with decreasing layer thickness, and that the maximum strength is determined by the Koehler barrier in the absence of coherency strains. For alternating Cu/Ni nanolayers, the dependence of the strength on the duplex layer thickness is found to be consistent with experimental results, down to a layer thickness of ≈10nm.  相似文献   

13.
田圆圆  李甲  胡泽英  王志鹏  方棋洪 《中国物理 B》2017,26(12):126802-126802
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics(MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy(SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.  相似文献   

14.
15.
The strengthening mechanisms in bimetallic Cu/Ni thin layers are investigated using a hybrid approach that links the parametric dislocation dynamics method with ab initio calculations. The hybrid approach is an extension of the Peierls–Nabarro (PN) model to bimaterials, where the dislocation spreading over the interface is explicitly accounted for. The model takes into account all three components of atomic displacements of the dislocation and utilizes the entire generalized stacking fault energy surface (GSFS) to capture the essential features of dislocation core structure. Both coherent and incoherent interfaces are considered and the lattice resistance of dislocation motion is estimated through the ab initio-determined GSFS. The effects of the mismatch in the elastic properties, GSFS and lattice parameters on the spreading of the dislocation onto the interface and the transmission across the interface are studied in detail. The hybrid model shows that the dislocation dissociates into partials in both Cu and Ni, and the dislocation core is squeezed near the interface facilitating the spreading process, and leaving an interfacial ledge. The competition of dislocation spreading and transmission depends on the characteristics of the GSFS of the interface. The strength of the bimaterial can be greatly enhanced by the spreading of the glide dislocation, and also increased by the pre-existence of misfit dislocations. In contrast to other available PN models, dislocation core spreading in the two dissimilar materials and on their common interface must be simultaneously considered because of the significant effects on the transmission stress.  相似文献   

16.
Two-dimensional discrete dislocation plasticity simulations of the evolution of thermal stress in single crystal thin films on a rigid substrate are used to study size effects. The relation between the residual stress and the dislocation structure in the films after cooling is analyzed using dislocation dynamics. A boundary layer characterized by a high stress gradient and a high dislocation density is found close to the impenetrable film-substrate interface. There is a material-dependent threshold film thickness above which the dislocation density together with the boundary layer thickness and stress state are independent of film thickness. In such films the stress outside the boundary layer is on average very low, so that the film-thickness-independent boundary layer is responsible for the size effect. A larger size effect is found for films thinner than the threshold thickness. The origin of this size effect stems from nucleation activity being hindered by the geometrical constraint of the small film thickness, so that by decreasing film thickness, the dislocation density decreases while the stress in the film increases. The size dependence is only described by a Hall–Petch type relation for films thicker than the threshold value.  相似文献   

17.
Layered composites of Cu/Nb achieve very high strength levels when the individual layer thicknesses are 1–10?nm, attributable to the interfaces acting as barriers to slip. Atomistic models of Cu/Nb bilayers were used to explore the origins of this resistance. The models clearly show that dislocations placed near an interface experience an attraction toward the interface, regardless of the sign of the Burgers vector or the material in which it is placed. This attraction is caused by shear of the interface induced by the stress field of the dislocation. Furthermore, the dislocation, upon reaching the interface, is absorbed by it in the sense that the core spreads within the interface. We develop a model, using a fractional dislocation approach, which provides an estimate of the strength of the attraction as a function of distance from the interface and also the dependence of the interaction on the type of dislocation. A screw dislocation is much more effective in shearing the interface, and the resulting attractive forces on screws are larger than for edge dislocations.  相似文献   

18.
Indenter size effect on the reversible incipient plasticity of Al(001) surface is studied by quasicontinuum simulations.Results show that the incipient plasticity under small indenter, the radius of which is less than ten nanometers, is dominated by a simple planar fault defect that can be fully removed after withdrawal of the indenter; otherwise, irreversible incipient plastic deformation driven by a complex dislocation activity is preferred, and the debris of deformation twins, dislocations,and stacking fault ribbons still remain beneath the surface when the indenter has been completely retracted. Based on stress distributions calculated at an atomic level, the reason why the dislocation burst instead of a simple fault ribbon is observed under a large indenter is the release of the intensely accumulated shear stress. Finally, the critical load analysis implies that there exists a reversible-irreversible transition of incipient plasticity induced by indenter size. Our findings provide a further insight into the incipient surface plasticity of face-centered-cubic metals in nano-sized contact issues.  相似文献   

19.
Y.P. Li  X.F. Zhu  J. Tan  W. Wang  B. Wu 《哲学杂志》2013,93(22):3049-3067
Plastic deformation behavior of Au/Cu multilayers with individual layer thicknesses of 25–250 nm was investigated via microindentation experiments. It was found that plastic instability of the Au/Cu multilayer exhibits strong length scale (individual layer thickness and grain size) dependence. The smaller the length scale, the easier shear bands form. In other words, plastic deformation becomes unstable with decreasing length scale. Cross-sectional observation along with plan-view indicates that the occurrence of plastic deformation instability corresponds to transformation of the deformation mechanism associated with geometrical configuration and length scale of the material. At nanometer scale, buckling-assisted interface crossing of dislocations results in local shear band, while, at submicron scale or above, local dislocation pileup-induced interface offset leads to plastic instability. Theoretical analysis is conducted to understand the length scale-dependent plastic deformation behavior of the multilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号