共查询到20条相似文献,搜索用时 0 毫秒
1.
J.Z. Guo Y. Zuo Z.J. Li W.D. Gao J.L. Zhang 《Physica E: Low-dimensional Systems and Nanostructures》2007,39(2):262-266
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly. 相似文献
2.
《Physica E: Low-dimensional Systems and Nanostructures》2008,40(2):262-266
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly. 相似文献
3.
《Current Applied Physics》2015,15(5):563-568
We demonstrate the surface treatment of graphene using an atmospheric pressure plasma jet (APPJ) system. The graphene was synthesized by a thermal chemical vapor deposition with methane gas. A Mo foil and a SiO2 wafer covered by Ni films were employed to synthesize monolayer and mixed-layered graphene, respectively. The home-built APPJ system was ignited using nitrogen gas to functionalize the graphene surface, and we studied the effect of different treatment times and interdistance between the plasma jet and the graphene surface. After the APPJ treatment, the hydrophobic character of graphene surface changed to hydrophilic. We found that the change is due to the formation of functionalities such as hydroxyl and carboxyl groups. Furthermore, it is worth noting that the nitrogen plasma treatment induced charge doping on graphene, and the pyridinic nitrogen component in the X-ray photoelectron spectroscopy spectrum was significantly enhanced. We conclude that the atmospheric pressure plasma treatment enables controlling the graphene properties without introducing surface defects. 相似文献
4.
石墨烯因其优异的性能在很多领域具有广阔的应用前景.目前石墨烯薄膜主要是以铜作为催化基底,通过化学气相沉积法制备.这种方法制备的石墨烯薄膜需要被转移到目标基底上进行后续应用,而转移过程则会对石墨烯造成污染,进而影响石墨烯的性质及器件的性能.如何减少或避免污染,实现石墨烯的洁净转移,是石墨烯薄膜转移技术研究的重要课题,也是本综述的主题.本综述首先简单介绍了石墨烯的转移方法;进而重点讨论由于转移而引入的各种污染物及其对石墨烯性质的影响,以及如何抑制污染物的引入或如何将其有效地去除;最后总结了石墨烯洁净转移所存在的挑战,展望了未来的研究方向和机遇.本综述不仅有助于石墨烯薄膜转移技术的研究,对整个二维材料器件的洁净制备也将有重要参考价值. 相似文献
5.
石墨烯因其奇特的能带结构和优异的物理性能而成为近年来大家研究的热点, 但是目前单层石墨烯的质量与尺寸制约了其实际应用的发展. 本文采用常压化学气相沉积(CVD)方法, 基于铜箔衬底, 利用甲烷作为碳源制备了高质量大面积的单层与多层石墨烯. 研究发现: 高温度、稀薄的甲烷浓度、较短的生长时间以及合适的气体流速是制备高质量、大面积石墨烯的关键. Raman光谱, 扫描电子显微镜、透射电子显微镜等表征结果表明: 制备的石墨烯主要为单层, 仅铜箔晶界处有少量多层石墨烯. 电学测试表明CVD制备的石墨烯在低温时呈现出较明显的类半导体特性; 薄膜电阻随外界磁场的增大而减小. 相似文献
6.
Low-temperature growth of ZnO epitaxial films by metal organic chemical vapor deposition 总被引:3,自引:0,他引:3
ZnO films were grown on Al2O3 (0001) substrates by metal organic chemical vapor deposition at temperatures of Tg=150300 °C. Epitaxial growth was obtained for Tg200 °C. The in-plane orientation of the ZnO unit cells was found to change from a no-twist one with respect to that of the substrate at Tg=200 °C to a 30°-twist one at Tg=300 °C. Absorption and photoluminescence were observed from the film grown at 150 °C, although there was no evidence of epitaxial growth. Films grown at Tg200 °C exhibited smoother surfaces. Moreover, all the films grown at Tg=150300 °C revealed acceptor-related emission peaks, indicating the incorporation of acceptors into the films. PACS 81.15.Gh; 78.55.Et; 78.66.Hf 相似文献
7.
Varchon F Feng R Hass J Li X Nguyen BN Naud C Mallet P Veuillen JY Berger C Conrad EH Magaud L 《Physical review letters》2007,99(12):126805
A strong substrate-graphite bond is found in the first all-carbon layer by density functional theory calculations and x-ray diffraction for few graphene layers grown epitaxially on SiC. This first layer is devoid of graphene electronic properties and acts as a buffer layer. The graphene nature of the film is recovered by the second carbon layer grown on both the (0001) and (0001[over]) 4H-SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. Hence the graphene is doped and a gap opens at the Dirac point after three Bernal stacked carbon layers are formed. 相似文献
8.
9.
10.
A new method for implementing graphene ribbons using selective graphene growth on metal-sidewall by chemical vapor deposition has been proposed. In this method, Ni catalyst is pre-patterned before chemical vapor deposition, and graphene film is selectively grown on the sidewall of the nickel for graphene ribbons. The graphene ribbons were confirmed by TEM image and Raman spectroscopy, and the fabricated graphene ribbon transistors showed well gate-modulated output characteristics. We believe this sidewall-graphene could be useful for applications such as graphene sensors which require high surface area of graphene. 相似文献
11.
Nucleation mechanism and morphology evolution of MoS_2 flakes grown by chemical vapor deposition 下载免费PDF全文
We study the nucleation mechanism and morphology evolution of MoS_2 flakes grown by chemical vapor deposition(CVD)on SiO_2/Si substrates with using S and MoO_3 powders.The MoS_2 flake is of monolayer with triangular nucleation,which might arise from the initial MoO_3-xthat is deposited on the substrate,and then bonded with S to form MoS_2 flake.The ratio of Mo and S is higher than 1:2 at the beginning with Mo terminated triangular nucleation formed.After that,the morphology of MoS_2 flake evolves from triangle to similar hexagon,then to truncated triangle which is determined by the faster growth speed of Mo termination than that of S termination under the S rich environment.The nucleation density does not increase linearly with the increase of reactant concentration,which could be explained by the two-dimensional nucleation theory. 相似文献
12.
13.
Sebastian Dayou Brigitte Vigolo Alexandre Desforges Jaafar Ghanbaja Abdul Rahman Mohamed 《Journal of nanoparticle research》2017,19(10):336
Chemical vapor deposition (CVD) reaction from metal particles to produce graphene has seldom been reported so far. In this paper, the CVD growth of graphene was conducted under ambient pressure without a dedicated stage for reduction treatment. Interestingly, copper nanoparticles supported on MgO prepared by simple impregnation were able to efficiently catalyze graphene. Quantification of the prepared graphene was carefully conducted. For the optimized conditions, 1000 °C for 30 min, high content of graphene (up to 27 at.%) could be produced. Our method shows high efficiency and growth rate of graphene, produced at much lower cost compared to the existing methods. 相似文献
14.
Effect of high-temperature annealing on AIN thin film grown by metalorganic chemical vapor deposition 下载免费PDF全文
Wang Wei-Ying Jin Peng Liu Gui-Peng Li Wei Liu Bin Liu Xing-Fang Wang Zhan-Guo 《中国物理 B》2014,(8):559-563
The effect of high-temperature annealing on A1N thin film grown by metalorganic chemical vapor deposition was investigated using atomic force microscopy, Raman spectroscopy, and deep ultra-violet photoluminescence (PL) with the excitation wavelength as short as ~ 177 nm. Annealing experiments were carded out in either N2 or vacuum atmosphere with the annealing temperature ranging from 1200 ℃ to 1600 ℃. It is found that surface roughness reduced and compres- sive strain increased with the annealing temperature increasing in both annealing atmospheres. As to optical properties, a band-edge emission peak at 6.036 eV and a very broad emission band peaking at about 4.7 eV were observed in the photoluminescence spectrum of the as-grown sample. After annealing, the intensity of the band-edge emission peak varied with the annealing temperature and atmosphere. It is also found that a much stronger emission band ranging from 2.5 eV to 4.2 eV is superimposed on the original spectra by annealing in either N2 or vacuum atmosphere. We attribute these deep-level emission peaks to the VAL--ON complex in the A1N material. 相似文献
15.
Effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition 下载免费PDF全文
The effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition was investigated using atomic force microscopy, Raman spectroscopy, and deep ultra-violet photoluminescence(PL) with the excitation wavelength as short as ~ 177 nm. Annealing experiments were carried out in either N2 or vacuum atmosphere with the annealing temperature ranging from 1200℃ to 1600℃. It is found that surface roughness reduced and compressive strain increased with the annealing temperature increasing in both annealing atmospheres. As to optical properties,a band-edge emission peak at 6.036 eV and a very broad emission band peaking at about 4.7 eV were observed in the photoluminescence spectrum of the as-grown sample. After annealing, the intensity of the band-edge emission peak varied with the annealing temperature and atmosphere. It is also found that a much stronger emission band ranging from 2.5 eV to 4.2 eV is superimposed on the original spectra by annealing in either N2 or vacuum atmosphere. We attribute these deep-level emission peaks to the VAL–ONcomplex in the AlN material. 相似文献
16.
17.
In this study, the dependence of the deposition rate on processing parameters, such as temperature, and partial pressure is studied by chemical vapor deposition from mixture of methyltrichlorosilane (CH3SiCl3, MTS) and hydrogen. The kinetics investigation is carried out in a tubular, hot-wall reactor coupled to a sensitive magnetic suspension microbalance. The results show that the active energy limited by surface reactions is 188 kJ/mol. In the case, the deposition rate is linear to the partial pressure of MTS and the square of partial pressure of hydrogen. SiCl2 and CH3 are proposed as the effective precursor for SiC. A reaction model was proposed concluding gas phase reactions and surface reactions. The theoretical relation between deposition rate and partial pressures of MTS and H2 was in a good accordance with experimental results. 相似文献
18.
19.
SiC epitaxial layers grown by chemical vapour deposition and the fabrication of Schottky barrier diodes 下载免费PDF全文
This paper presents the results of unintentionally doped
4H-SiC epilayers grown on n-type Si-faced 4H-SiC substrates with 8°
off-axis toward the [11\overline 2 0] direction by low pressure
horizontal hot-wall chemical vapour deposition. Growth temperature
and pressure are 1580~°C and 104~Pa, respectively. Good surface
morphology of the sample is observed using atomic force
microscopy (AFM) and scanning electron microscopy (SEM). Fourier transform
infrared spectroscopy (FTIR) and x-ray diffraction (XRD) are used to
characterize epitaxial layer thickness and the structural quality of the
films respectively. The carrier concentration in the unintentional 4H-SiC
homoepitaxial layer is about 6.4×1014~cm-3 obtained by
c--V measurements. Schottky barrier diodes (SBDs) are fabricated on the
epitaxial wafer in order to verify the quality of the wafer and to obtain
information about the correlation between background impurity and electrical
properties of the devices. Ni and Ti/4H-SiC Schottky barrier diodes with
very good performances were obtained and their ideality factors are 1.10 and 1.05
respectively. 相似文献
20.
Hoon Young Cho Chan Jin Park 《Physica E: Low-dimensional Systems and Nanostructures》2003,16(3-4):489
Single crystalline Si epilayers were grown on sapphire
substrates through a three-step growth method by rapid thermal chemical vapor deposition (RTCVD). Hydrogenation of the epilayers was performed by the hydrogen-plasma exposure (HPE) in a remote plasma chemical vapor deposition (RPCVD) system, following rapid thermal annealing. It was found that the hydrogenation treatment improves the crystallinity of the Si epilayer as well as the electrical properties of Si epilayers. After hydrogenation, especially, the intensity of the deep level defects which are responsible for the lattice mismatch between Si and the sapphire substrate decreases. Also, dislocations and microtwins are reduced remarkably, improving the crystallinity. In Schottky diodes fabricated on hydrogenation-processed Si epilayers, the leakage current decreases one order of magnitude in comparison to non-hydrogenated samples. It is suggested that these characteristics could be explained by the hydrogen incorporation at defects. 相似文献