首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Shiu RC  Lan YC 《Optics letters》2011,36(21):4179-4181
We elucidate in this Letter plasmonic Zener tunneling (PZT) in metal-dielectric waveguide arrays (MDWAs) by using numerical simulations and theoretical analyses. PZT in MDWAs occurs at the waveguide entrance and wherever the beam completes Bloch oscillations, because the bandgap between the first and second bands is minimal at the center of the first Brillouin zone. This feature significantly differs from that of optical Zener tunneling in dielectric waveguide arrays. The dependence of the simulated tunneling rate on the gradient of the relative permittivity of the dielectric layers correlates with the tunneling theory, thus confirming the occurrence of PZT in MDWAs.  相似文献   

2.
铁璐  薛具奎 《中国物理 B》2011,20(12):120311-120311
The nonlinear Landau-Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.  相似文献   

3.
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.  相似文献   

4.
We report on our recent theoretical and experimental studies of three-dimensional (3D) photonic lattice structures which are established in a bulk nonlinear crystal by employing different optical induction techniques. These 3D photonic lattices bring about new opportunities for controlling the flow of light via coupling engineering originated from the lattice modulation along the beam propagation direction. By fine tuning the lattice parameters, we observe a host of unusual behaviors of beam propagation in such reconfigurable 3D lattices, including enhanced discrete diffraction, light tunneling inhibition—better known as coherent destruction of tunneling (CDT), anomalous diffraction, negative refraction, as well as CDT-based image transmission. In addition, we propose and demonstrate a new way of creating 3D ionic-type photonic lattices by controlled Talbot effect.  相似文献   

5.
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.  相似文献   

6.
We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect of the intrinsic nonlinearity of the condensate on the tunneling resonances.  相似文献   

7.
We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of a 1D atomic Bose gas, providing a possible explanation for our observations.  相似文献   

8.
We report on the first realization of a single bosonic Josephson junction, implemented by two weakly linked Bose-Einstein condensates in a double-well potential. In order to fully investigate the nonlinear tunneling dynamics we measure the density distribution in situ and deduce the evolution of the relative phase between the two condensates from interference fringes. Our results verify the predicted nonlinear generalization of tunneling oscillations in superconducting and superfluid Josephson junctions. Additionally, we confirm a novel nonlinear effect known as macroscopic quantum self-trapping, which leads to the inhibition of large amplitude tunneling oscillations.  相似文献   

9.
Zhang P  Efremidis NK  Miller A  Hu Y  Chen Z 《Optics letters》2010,35(19):3252-3254
We demonstrate coherent destruction of tunneling (CDT) in optically induced three-dimensional photonic lattices. By fine-tuning the lattice modulation, we show unusual behavior of beam propagation, including light tunneling inhibition, anomalous diffraction, and negative refraction mediated by zero or negative coupling in the waveguide arrays. Image transmission based on CDT is also proposed and demonstrated. Our experimental results are in good agreement with our theoretical analyses.  相似文献   

10.
We discuss the interplay between transport and intrinsic dissipation in quantum Hall bilayers, within the framework of a simple thought experiment. We compute, for the first time, quantum corrections to the semiclassical dynamics of this system. This allows us to reinterpret tunneling measurements on these systems. We find a strong peak in the zero-temperature tunneling current that arises from the decay of Josephson-like oscillations into incoherent charge fluctuations. In the presence of an in-plane field, resonances in the tunneling current develop an asymmetric line shape.  相似文献   

11.
We study the reflection of Bloch wave packets at the interface of an optical lattice possessing a shallow longitudinal out-of-phase refractive index modulation in the adjacent waveguides. We show that the relation between the transmitted and reflected energy flows can be efficiently controlled by tuning the frequency and depth of the modulation. Thus, complete beam reflection may be achieved for a set of resonant modulation frequencies at which light tunneling between adjacent guides of modulated lattice is inhibited.  相似文献   

12.
By selecting two dressed rotational states of ultracold polar molecules in an optical lattice, we obtain a highly tunable generalization of the t-J model, which we refer to as the t-J-V-W model. In addition to XXZ spin exchange, the model features density-density interactions and density-spin interactions; all interactions are dipolar. We show that full control of all interaction parameters in both magnitude and sign can be achieved independently of each other and of the tunneling. As a first step towards demonstrating the potential of the system, we apply the density matrix renormalization group method to obtain the 1D phase diagram of the simplest experimentally realizable case. Specifically, we show that the tunability and the long-range nature of the interactions in the t-J-V-W model enable enhanced superfluidity. Finally, we show that Bloch oscillations in a tilted lattice can be used to probe the phase diagram experimentally.  相似文献   

13.
We investigated spin-dependent tunneling conductance properties in fully epitaxial double MgO barrier magnetic tunnel junctions with layered nanoscale Fe islands as a middle layer. Clear oscillations of the tunneling conductance were observed as a function of the bias voltage. The oscillation, which depends on the middle layer thickness and the magnetization configuration, is interpreted by the modulation of tunneling conductance due to the spin-polarized quantum well states created in the middle Fe layer. This first observation of the quantum size effect in the fully epitaxial double barrier magnetic tunnel junction indicates great potential for the development of the spin-dependent resonant tunneling effect in coherent tunneling regime.  相似文献   

14.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that-surprisingly-even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice that may serve as a framework for more sophisticated theories.  相似文献   

15.
Bloch oscillations are a powerful tool to investigate spectra with Dirac points. By varying band parameters, Dirac points can be manipulated and merged at a topological transition toward a gapped phase. Under a constant force, a Fermi sea initially in the lower band performs Bloch oscillations and may Zener tunnel to the upper band mostly at the location of the Dirac points. The tunneling probability is computed from the low-energy universal Hamiltonian describing the vicinity of the merging. The agreement with a recent experiment on cold atoms in an optical lattice is very good.  相似文献   

16.
We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coherence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative magnitude of their separation and the temperature. We analyze both regimes in the strong and weak tunneling amplitude limits as well as their temperature dependence. We find that the tunneling conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling amplitudes with the same period but with different functional form.  相似文献   

17.
Behaviour of a relativistic electron bunch, injected and trapped in a high intensity optical lattice resulting from the interference of two laser beams is studied. The optical lattice modifies the phase space distribution of the electron bunch due to the trapping and compression of the electrons by a ponderomotive force. High-frequency longitudinal beam eigenmodes of the trapped electron bunch are described in the framework of fluid and kinetic models. Such beam oscillations are expected to play a pivotal role in a stimulated Raman scattering of laser beams on the electrons.  相似文献   

18.
In a numerical study, we demonstrate the dynamical tunneling (DT) of two counterpropagating (CP) mutually incoherent beams in a two-dimensional photonic lattice, recorded in a photorefractive (PR) crystal. The beams are launched head-on from the opposite faces of a PR crystal in which an optically induced two-dimensional photonic lattice is established. The DT is caused by the spontaneous symmetry breaking of CP beams, which is induced by the nonlinear interaction between the beams and is mediated by the lattice. To observe DT we found no need to introduce a specific external tilt potential, as is done in the conventional Zener tunneling; the tilting is provided by the repulsive interaction between the beams, which causes ejection of one beam from the launching region of the other. As the beams propagate, they move laterally in real time, causing the leakage of radiation from the first Brillouin zone to the second and higher zones. In the process the beams also tunnel from the first photonic band zone to the higher zones, which by definition is the DT.  相似文献   

19.
A periodic array of δ function potentials are used to simulate the potential barriers between quantum wires in the presence or absence of lattice site dislocation. The exact eigenenergies and eigenfunctions are found by employing a numerical diagonalization procedure. Based on these results, a self-consistent field theory is derived for the mid-infrared absorption coefficient of the system. The crossover from a cyclotron mode to two tunneling coupled modes and finally to edge and 1D lattice magnetoplasmon modes with increasing modulation strength is investigated. The magnetic field enhanced and suppressed electron tunneling, associated with the evolution to cyclotron modes at strong magnetic fields passing through the formation of tunneling coupled modes, is observed. The edge mode excitation energy oscillates as a function of the electron density. These oscillations correspond to a soft or hard potential wall for which the electron states are extended or localized, respectively. The displacement of the 1D lattice magnetoplasmon modes under strong modulation is found to be periodic and corresponds to the evolution from a complex unit cell which is composed of one narrow and one wide quantum wire to a simple unit cell containing only one quantum wire. The magnetoresistivities and the associated conductivities are also calculated for the lateral surface superlattice. At strong potential modulation there is a giant peak in the Hall conductivity and many peaks in its resistivity in the quantum regime. With strong modulation, the suppression of the transverse conductivity along with oscillations in its resistivity are obtained.  相似文献   

20.
We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号