首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and quantized Hall effects that have recently attracted theoretical and experimental attention. We study the Fermi energy and disorder dependence of its spin Hall conductivity sigma(xy)(SH). In the metallic regime we find that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to sigma(xy)(SH) values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even when the spin-orbit gap does not survive disorder.  相似文献   

2.
Layered singlet paired superconductors with disorder and broken time reversal symmetry are studied, demonstrating a phase diagram with charge-spin separation in transport. In terms of the average intergrain transmission and the interlayer tunneling we find quantum Hall phases with spin Hall coefficients of sigma(spin)(xy)=0,2 separated by a spin metal phase. We identify a spin metal-insulator localization exponent as well as a spin conductivity exponent of approximately 0.96. In the presence of a Zeeman term an additional sigma(spin)(xy)=1 phase appears.  相似文献   

3.
The anomalous Hall effect due to the spin chirality order and fluctuation is studied theoretically in a Kondo lattice model without the relativistic spin-orbit interaction. Even without the correlations of the localized spins, sigma(xy) can emerge depending on the lattice structure and the spin anisotropy. We reveal the condition for this chirality-fluctuation driven mechanism for sigma(xy). Our semiquantitative estimates for a pyrochlore oxide Nd2Mo2O7 give a finite sigma(xy) approximately equal 10 Omega(-1) cm(-1) together with a high resistivity rho(xx) approximately equal 10(-4)-10(-3) Omega cm, in agreement with experiments.  相似文献   

4.
We measure the Hall conductivity, sigma(xy), on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in sigma(xy) at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for sigma(xy) quantization.  相似文献   

5.
We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of the AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of sigma(xy) induced by the localization except for the few extended states carrying Chern numbers. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore, the condition for the quantized AHE is given only by the Hall conductivity sigma(xy) without the quantum correction, i.e., /sigma(xy)/>e(2)/(2h).  相似文献   

6.
The effect of strong long-range disorder on the quantization of the Hall conductivity sigma{xy} in graphene is studied numerically. It is shown that increasing Landau-level mixing progressively destroys all plateaus in sigma{xy} except the plateaus at sigma{xy}=-/+e{2}/2h (per valley and per spin). The critical state at the Dirac point is robust to strong disorder and belongs to the universality class of the conventional plateau transitions in the integer quantum Hall effect. We propose that the breaking of time-reversal symmetry by ripples in graphene can realize this quantum critical point in a vanishing magnetic field.  相似文献   

7.
We present a theory of the anomalous Hall effect in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity sigma(AH)(xy). We show that sigma(AH)(xy) is proportional to the first derivative of the density of states varrho(epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that sigma(AH)(xy) depends on temperature as the longitudinal conductivity sigma(xx) within logarithmic accuracy.  相似文献   

8.
In high-purity YBa(2)Cu(3)O(7), the (weak-field) thermal Hall conductivity kappa(xy) is observed to increase a thousand-fold between 90 and 30 K. The inferred quasiparticle lifetime tau increases a hundred-fold starting below 90 K, in disagreement with a recent photoemission experiment. We show that kappa(xy) exhibits a specific scaling behavior below approximately 30 K. This scaling may bear on the issue of whether Landau quantization of the quasiparticle states occurs.  相似文献   

9.
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.  相似文献   

10.
Infrared ( 20-120 and 900-1100 cm(-1)) Faraday rotation and circular dichroism are measured in high- T(c) superconductors using sensitive polarization modulation techniques. Optimally doped YBa2Cu3O7 thin films are studied at temperatures in the range ( 15相似文献   

11.
We report the temperature (T) and perpendicular magnetic-field (B) dependence of the Hall resistivity rho(xy)(B) of dilute metallic 2D holes in GaAs over a broad range of temperature (0.02-1.25 K). The low B Hall coefficient, R(H), is found to be enhanced when T decreases. Strong magnetic fields further enhance the slope of rho(xy)(B) at all temperatures studied. Coulomb interaction corrections of a Fermi liquid (FL) in the ballistic regime can not explain the enhancement of rho(xy) which occurs in the same regime as the anomalous metallic longitudinal conductivity. In particular, although the metallic conductivity in 2D systems has been attributed to electron interactions in a FL, these same interactions should reduce, not enhance, the slope of rho(xy)(B) as T decreases and/or B increases.  相似文献   

12.
The anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) are experimentally investigated in a variety of ferromagnetic metals including pure transition metals, oxides, and chalcogenides, whose resistivities range over 5 orders of magnitude. For these ferromagnets, the transverse conductivity sigma{xy} versus the longitudinal conductivity sigma{xx} shows a crossover behavior with three distinct regimes in accordance qualitatively with a recent unified theory of the intrinsic and extrinsic AHE. We also found that the transverse Peltier coefficient alpha{xy} for the ANE obeys the Mott rule. These results offer a coherent and semiquantitative understanding of the AHE and ANE to an issue of controversy for many decades.  相似文献   

13.
The transverse thermoelectric (Nernst) effect on pyrochlore molybdates is investigated experimentally. In Nd(2)Mo(2)O(7) and Sm(2)Mo(2)O(7) with the spin chirality, the Nernst signal, which mostly arises from the transverse heat current (or equivalently the transverse Peltier coefficient alpha(xy)), shows a low-temperature (20-30 K) positive extremum, whereas it is absent in (Gd(0.95)Ca(0.05))(2)Mo(2)O(7) with no single-spin anisotropy of the rare-earth ion and hence with no spin chirality. The correlation between the Hall conductivity sigma(xy) and alpha(xy) in Nd(2)Mo(2)O(7) also indicates the spin chirality plays a significant role in the spontaneous (anomalous) Nernst effect.  相似文献   

14.
Unconventional integer quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
Monolayer graphite films, or graphene, have quasiparticle excitations that can be described by (2+1)-dimensional Dirac theory. We demonstrate that this produces an unconventional form of the quantized Hall conductivity sigma(xy) = -(2e2/h)(2n+1) with n = 0, 1, ..., which notably distinguishes graphene from other materials where the integer quantum Hall effect was observed. This unconventional quantization is caused by the quantum anomaly of the n=0 Landau level and was discovered in recent experiments on ultrathin graphite films.  相似文献   

15.
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs, and AlAs is large [approximately 100(planck/e)(Omega cm)(-1)], showing the possibility of a spin Hall effect beyond the four-band Luttinger Hamiltonian. The calculated orbital-angular-momentum (orbital) Hall conductivity is one order of magnitude smaller, indicating no cancellation between the spin and orbital Hall effects in bulk semiconductors. Furthermore, it is found that the spin Hall effect can be strongly manipulated by strains, and that the ac spin Hall conductivity is large in pure as well as doped semiconductors.  相似文献   

16.
We calculate the Hall conductivity sigma(xy) and resistivity rho(xy) of a granular system at large tunneling conductance g(T)>1. We show that in the absence of Coulomb interaction the Hall resistivity depends neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula rho(xy)=H/(n*ec), where n* differs from the carrier density n inside the grains by a numerical coefficient determined by the shape of the grains. The Coulomb interaction gives rise to logarithmic in temperature T correction to rho(xy) in the range Gamma less or similar T less or similar min(g(T)E(c), E(Th)), where Gamma is the tunneling escape rate, E(c) is the charging energy, and E(Th) is the Thouless energy of the grain.  相似文献   

17.
For a three-dimensional (3D) lattice in magnetic fields we have shown that the hopping along the third direction, which normally smears out the Landau quantization gaps, can rather give rise to a Hofstadter's butterfly specific to 3D when a criterion is fulfilled by anisotropic (quasi-one-dimensional) systems. In 3D the angle of the magnetic field plays the role of the field intensity in 2D, so that the butterfly can occur in much smaller fields. We have also calculated the Hall conductivity in terms of the topological invariant in the Kohmoto-Halperin-Wu formula, and each of sigma(xy),sigma(zx) is found to be quantized.  相似文献   

18.
In a ferromagnet, an anomalous Hall heat current, given by the off-diagonal Peltier term alpha(xy), accompanies the anomalous Hall current. By combining Nernst, thermopower, and Hall experiments, we have measured how alpha(xy) varies with hole density and lifetime tau in CuCr2Se4-xBrx. At low temperatures T, we find that alpha(xy) is independent of tau, consistent with anomalous-velocity theories. Its magnitude is fixed by a microscopic geometric area A approximately 34 A(2). Our results are incompatible with some models of the Nernst effect in ferromagnets.  相似文献   

19.
We introduce an exactly solvable SU(2)-invariant spin-1/2 model with exotic spin excitations. With time reversal symmetry (TRS), the ground state is a spin liquid with gapless or gapped spin-1 but fermionic excitations. When TRS is broken, the resulting spin liquid exhibits deconfined vortex excitations which carry spin-1/2 and obey non-Abelian statistics. We show that this SU(2) invariant non-Abelian spin liquid exhibits the spin quantum Hall effect with quantized spin Hall conductivity σ(xy)(s)=?/2π, and that the spin response is effectively described by the SO(3) level-1 Chern-Simons theory at low energy. We further propose that a SU(2) level-2 Chern-Simons theory is the effective field theory describing the topological structure of the non-Abelian SU(2) invariant spin liquid.  相似文献   

20.
We have investigated the Hall effect in the geometrically frustrated Kondo lattice Pr2Ir2O7. In its spin-liquid-like paramagnetic regime, the Hall resistivity rho(xy) is found to increase logarithmically on cooling. Moreover, in this low temperature region, the field dependence of the Hall conductivity sigma(xy) shows a large enhancement up to 30 Omega(-1) cm(-1) as well as a nonmonotonic change with the magnetization. Our results are far different from the anomalous Hall effect due to the spin-orbit coupling observed in ordinary magnetic conductors. We discuss the possible spin-chirality effect in the Ir 5d conduction band due to the noncoplanar texture of Pr<111> Ising-like moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号