首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A model of solid surface erosion under ion bombardment is proposed. This model takes into account the dependence of the local sputtering yield on the nanoscale relief at a given point and the point of incidence of a primary ion. Such an approach leads to spatially nonlocal erosion model, which predicts the formation of a wavelike relief in the presence of nanoscale inhomogeneities on the surface.  相似文献   

3.
We present the possible schematics of nanoscale graphene-flake shuttle-memory, discuss its basic principles, and investigate the energetic and the dynamic properties via classical molecular dynamics simulations. Graphite flake surface, where the nanoscale graphene-flake’s stage of activity takes place, has a dumbbell shape, and a nanoscale graphene-flake is placed on its surface. The van der Waals interactions between the graphene-flake and the patterned graphite make the bistable potential energy wells in the larger surface area regions of the patterned graphite, and then the graphene-flake keeps its seat on one of the bistable positions, which is the place where the binary data is archived. Since the movable graphene-flake can be also shuttled between the bistable states through the narrow passageway, this proposed nano-graphene-flake shuttle-memory can be utilized from nanoscale switchable nonvolatile memory.  相似文献   

4.
Diblock copolymers confined to a two-dimensional surface may produce uniform features of macromolecular dimensions (approximately 10-100 nm). We present a mathematical model for nanoscale pattern formation in such polymers that captures the dynamic evolution of a solution of poly(styrene)-b-poly(ethylene oxide), PS-b-PEO, in solvent at an air-water interface. The model has no fitting parameters and incorporates the effects of surface tension gradients, entanglement or vitrification, and diffusion. The resultant morphologies are quantitatively compared with experimental data.  相似文献   

5.
We show that nanoscale doping profiles inside a nanocolumn in combination with Fermi-level pinning at the surface give rise to the formation of a saddle-point in the potential profile. Consequently, the lateral confinement inside the channel varies along the transport direction, yielding an embedded quantum point contact. An analytical estimation of the quantization energies is given. PACS 73.21.Hb; 73.40.-c; 73.63.-b; 73.63.Nm  相似文献   

6.
Some pattern formation processes on single-crystal catalytic surfaces involve transitions between alternative surface phases coupled with oscillatory reaction dynamics. We describe a two-tier symmetry-breaking model of this process, based on nanoscale boundary dynamics interacting with oscillations of adsorbate coverage on microscale. The surface phase distribution oscillates together with adsorbate coverage, and, in addition, undergoes a slow coarsening process due to the curvature dependence of the drift velocity of interphase boundaries. The coarsening is studied both statistically, assuming a circular shape of islands of the minority phase, and through detailed Lagrangian modeling of boundary dynamics. Direct simulation of boundary dynamics allows us to take into account processes of surface reconstruction, leading to self-induced surface roughening. As a result, the surface becomes inhomogeneous, and the coarsening process is arrested way before the thermodynamic limit is reached, leaving a chaotic distribution of surface phases. (c) 1999 American Institute of Physics.  相似文献   

7.
In the present communication, we report the formation of organized nanoscale aggregates of a coumarin derivative 7 Hydroxy-N-Octadecyl Coumarin-3-Carboxamide (7HNO3C) at the air–water interface and in Langmuir–Blodgett (LB) films in the presence and absence of stearic acid (SA). A pressure-area isotherm reveals that the 7HNO3C form stable monolayer at the air–water interface. However, the stability can be improved by mixing it with a fatty acid stearic acid (SA). The miscibility study shows that the nature of interaction is strongly dependent on the mixing ratio and surface pressure. At a mole fraction of 0.4 of 7HNO3C in SA, the attractive and repulsive interaction between these two molecules balance each other forming a stable film with nanoscale aggregates. UV-Vis absorption spectroscopic studies reveal the nature of the aggregates in LB films. Scanning electron microscopy gives compelling visual evidence of formation of nanoscale aggregates in the mixed LB films.  相似文献   

8.
We report first-principles calculations on the adsorption of a metallic (6,6) single-walled carbon nanotube (SWCN) on the Si(001) surface. We find stable geometries for the nanotube between two consecutive dimer rows where C-Si chemical bonds are formed. The binding energy in the most stable geometry is found to be 0.2 eV/A. Concerning the electronic properties, the most stable structure shows an increase in the density of states near the Fermi level due to the formation of C-Si bonds enhancing the metallic character of the nanotube by the contact with the surface. These properties may lead one to consider metallic SWCNs adsorbed on Si substrates for interconnections and contacts on future nanoscale devices. Finally, the nature of the nanotube-surface interaction for nanotubes of larger diameters is also discussed.  相似文献   

9.
Leidenfrost effect is a common and important phenomenon which has many applications,however there is a limited body of knowledge about the Leidenfrost effect at the nanoscale regime.We investigate the impact of substrate wettability on Leidenfrost point temperature(LPT) of nanoscale water film via molecular dynamics simulations,and reveal a new mechanism different from that at the macroscale.In the molecular dynamics simulations,a method of monitoring density change at different heating rates is proposed to obtain accurate LPT under different surface wettability.The results show that LPT decreases firstly and then increases with the surface wettability at the nanoscale,which is different from the monotonous increasing trend at the macroscale.The mechanism is elucidated by analyzing the competitive effect of adhesion force and interfacial thermal resistance,as well as different contributions of gravity on LPT at the nanoscale and macroscale.The investigations can deepen the understanding of Leidenfrost effect at the nanoscale regime and also facilitate to guide the applications of heat transfer and flow transport.  相似文献   

10.
We fabricated nanoscale open-dot structures in an InAs surface inversion layer using an atomic-force-microscope oxidation process. Due to its superior nanofabrication capability, small open-dot structures with the feature size ranging between 100 and 300 nm were successfully fabricated. The magnetoresistance signal measured at 4.2 K showed reproducible fluctuations and a periodic oscillation component that varies in both amplitude and periodicity depending on the dot size. We show that the period of the oscillations corresponds to that of the Aharonov–Bohm effect and propose that the possible mechanism for the oscillations is due to the formation of a one-dimensional electron channel enclosing the open-dot structure as a result of the electron transfer from the InAs oxide to InAs.  相似文献   

11.
We have observed a novel modification of a surface state due to a local strain field induced by a nanopattern formation. N adsorption on the Cu(100) surface induces a nanoscale grid pattern, where the clean Cu regions remain periodically. The lattice is contracted on the clean region by adjacent c(2 x 2)N domains, which have a larger lattice constant. On this patterned surface, we have investigated the Tamm-type surface state at M by means of angle-resolved ultraviolet photoelectron spectroscopy. The binding energy of the Tamm state shifts toward the Fermi level continuously with increasing N coverage, i.e., the intensity of the strain field. This behavior due to the strain field is completely different from that caused by electron confinement observed on vicinal surfaces. The Brillouin zone extension corresponding to the lattice contraction was also detected.  相似文献   

12.
Fundamental mechanism of femtosecond-laser-induced periodic surface nanostructure formation has been investigated under the condition using superimposed multiple shots at lower fluence than the single-pulse ablation threshold. With increasing the shot number of low-fluence fs-laser pulses, the periodic nanostructure develops through the bonding structure change of target material, the nanoscale ablation with optical near-fields induced around the high curvatures, and the excitation of surface plasmon polaritons (SPPs) to create the nano-periodicity in the surface structure. It is confirmed that non-thermal interaction at the surface plays the crucial role in the nanostructure formation. Based on the mechanism, we have demonstrated that the periodic nanostructure formation process can be controlled to fabricate a homogeneous nanograting on the target surface, using a two-step ablation process in air. The experimental results obtained represent exactly the nature of a single spatial standing SPP wave mode that generates periodically enhanced near-fields for the nanograting formation. The calculated results for a model target reproduce well the nanograting period and explain the characteristic properties observed in the experiment.  相似文献   

13.
We observe reversible light assisted formation and evaporation of rubidium clusters embedded in nanoporous silica. Metallic nanoparticles are cyclically produced and evaporated by weak blue-green and near-infrared light, respectively. The atoms photodetached from the huge surface of the silica matrix build up clusters, whereas cluster evaporation is increased by induced surface plasmon excitation. Frequency tuning of light activates either one process or the other and the related changes of glass transparency become visible to the naked eye. We demonstrate that the porous silica, loaded with rubidium, shows memory of illumination sequences behaving as a rereadable and rewritable optical medium. These processes take place as a consequence of the strong confinement of atoms and particles at the nanoscale.  相似文献   

14.
《Current Applied Physics》2018,18(1):114-121
We perform large-scale molecular dynamics simulations to delve into tensile and compressive loading of nanotubes containing {112} nanoscale twins in body-centered cubic tungsten, as a function of wall thickness, twin boundary spacing, and strain rate. Solid nanopillars without the interior hollow and/or nanotubes without the nanoscale twins are also investigated as references. Our findings demonstrate that both stress-strain response and deformation behavior of nanotwinned nanotubes and nanopillars exhibit a strong tension-compression asymmetry. The yielding of the nanotwinned nanotubes with thick walls is governed by dislocation nucleation from the twin boundary/surface intersections. With a small wall thickness, however, the failure of the nanotwinned nanotubes is dominated by crack formation and buckling under tensile and compressive loading, respectively. In addition, the strain rate effect, which is more pronounced in compressive loading than in tensile loading, increases with a decreasing twin boundary spacing.  相似文献   

15.
Characterizing surface roughness in nanoscale nondestructively is an urgent need for semiconductor and wafer manufacturing industries. To meet the need, an optical scatter instrument in bidirectional ellipsometry has been developed for characterizing nanoscale surface roughness, in particular, on the wafers after chemical-mechanical polishing. The polarized angular dependence of out-of-plane light-scattering from nanoscale surface roughness is analyzed and characterized. These analysis and characterization results show strong correlations of surface roughness and angular dependence of bidirectional ellipsometric parameters for full field light-scattering. The experimental findings prove good agreement with theoretical predictions for different surface roughnesses. As a result, the nanoscale surface roughness can be accurately measured and characterized by the angular dependence and the polarization of light scattered from surface.  相似文献   

16.
Interface models and processing technologies are reviewed for successful establishment of surface passivation, interface control and MIS gate stack formation in III-V nanoelectronics. First, basic considerations on successful surface passivation and interface control are given, including review of interface models for the band alignment at interfaces, and effects of interface states in nanoscale devices. Then, a brief review is given on currently available surface passivation technologies for III-V materials, including the Si interface control layer (ICL)-based passivation scheme by the authors’ group. The Si-ICL technique has been successfully applied to surface passivation of nanowires and to formation of a HfO2 high-k dielectric/GaAs interfaces with low values of the interface state density.  相似文献   

17.
激光诱导周期性表面结构(Laser-induced periodic surface structures,LIPSS)具有纳米尺度的特征结构和自重复的微观尺度的排列图案,因此,LIPSS在传感器、太阳能发电、光催化等方面具有广泛的应用前景。本文首先介绍LIPSS形成过程中超快激光与物质相互作用的复杂过程,强调瞬态光学性质和表面结构变化的作用。然后综述几种具有代表性的LIPSS形成机理,并且讨论了各自的优缺点。接着介绍了LIPSS形成过程中材料的变化,主要包括材料化学成分、晶体结构和表面微观结构的变化。最后综述了LIPSS在材料表面处理、光学和机械等方面的应用。  相似文献   

18.
We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves, plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.  相似文献   

19.
Discrete jumps are observed in the emitted current density (J) versus extraction electric field (E) curves in electron field emission measurements from a conductive, hydrogen-terminated air-exposed diamond surface. These jumps are well reproduced by computations based on the assumption that a 2D nanoscale quantum system with discrete energy levels exists in the diamond near-surface layer. The present results confirm the formation of well-defined quantum states of holes in the 2D surface layer present on hydrogenated air-exposed diamond surfaces.  相似文献   

20.
We show that nanoscale surface roughness, which commonly occurs on microfabricated metal electrodes, can significantly suppress electro-osmotic flows when excess surface conductivity is appreciable. We demonstrate the physical mechanism for electro-osmotic flow suppression due to surface curvature, compute the effects of varying surface conductivity and roughness amplitudes on the slip velocities of a model system, and identify scalings for flow suppression in different regimes of surface conduction. We suggest that roughness may be one factor that contributes to large discrepancies observed between classical electrokinetic theory and modern microfluidic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号