首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonmetallic crystals with high thermal conductivity   总被引:2,自引:0,他引:2  
Nonmetallic crystals transport heat primarily by phonons at room temperature and below. There are only a few nonmetallic crystals which can be classed as high thermal conductivity solids, in the sense of having a thermal conductivity of > 1 W/cmK at 300K. Thermal conductivity measurements on natural and synthetic diamond, cubic BN, BP and AIN confirm that all of them are high thermal conductivity solids. Studies have been made of the effect on the thermal conductivity of nitrogen impurities in diamond, and oxygen impurities in AIN. The nitrogen impurities scatter phonons mostly from the strain field, the oxygen impurities scatter phonons mostly from the mass defects caused by aluminum vacancies. Pure A1N as well as pure SiC, BeO, BP and BeS conduct heat almost as well as does copper at room temperature, while pure natural and synthetic diamonds conduct heat five times better than copper.All of the nonmetallic solids that are known to possess high thermal conductivity have either the diamond-like, boron carbide, or graphite crystal structure. There are twelve different diamond-like crystals, a few boron carbide-type crystals, and two graphite structure crystals that have high thermal conductivity. Analyses of the rock-salt, fluorite, quartz, corundum and other structures show no candidates for this class. The four rules for finding crystals with high thermal conductivity are that the crystal should have (1) low atomic mass, (2) strong bonding, (3) simple crystal structure, and (4) low anharmonicity. The prime example of such a solid is diamond, which has the highest known thermal conductivity at 300K.  相似文献   

2.
Results are presented of the measurement of the thermal conductivity of alloys of the eutectic systems Sn-Pb and Sn-In in the solid and liquid phases from 100 to 600 °C by a steady-state method. The thermal conductivity of the investigated alloys depends linearly on the temperature. The contribution of the phonon and electron components to the thermal conductivity are estimated. It is concluded from the results that the presence of foreign atoms in the investigated alloys has no significant effect on the thermal conductivity, which is determined principally by the scattering of the electrons by the phonons.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 25–28, December, 1970.  相似文献   

3.
The thermal conductivity of porous glass with randomly distributed connecting pores ~70 Å in size (glass porosity ~25%), as well as of a porous glass + NaCl composite, was measured in the temperature range 5–300 K. NaCl filled one fourth of the pores in the composite. The experimental results on the composite thermal conductivity can be accounted for only by assuming that phonons scatter from the boundaries of NaCl nanocrystals embedded in channels of the porous glass.  相似文献   

4.
Lattice thermal conductivity can be reduced by introducing point defect, grain boundary, and nanoscale precipitates to scatter phonons of different wave-lengths, etc. Recently, the effect of electron–phonon (EP) interaction on phonon transport has attracted more and more attention, especially in heavily doped semiconductors. Here the effect of EP interaction in n-type P-doped single-crystal Si has been investigated. The lattice thermal conductivity decreases dramatically with increasing P doping. This reduction on lattice thermal conductivity cannot be explained solely considering point defect scattering. Further, the lattice thermal conductivity can be fitted well by introducing EP interaction into the modified Debye–Callaway model, which demonstrates that the EP interaction can play an important role in reducing lattice thermal conductivity of n-type P-doped single-crystal Si.  相似文献   

5.
The recent demonstration of thermal conductivity of rough electrolessly etched Si nanowire (Hochbaum et al., Nature, 451:163, 2008) attracted a lot of interest, because it could not be explained by the existing theory; thermal conductivity of rough Si nanowires falls below the boundary scattering of the thermal conductivity. However, nanoscale pores presented in the nanowires (Hochbaum et al., Nano Letters, 9:3550–3554, 2009) hinder one to be fully convinced that the surface roughness solely made a contribution to the significant reduction in thermal conductivity. In this study, we synthesized vapor–liquid–solid (VLS) grown rough Si1−x Ge x nanowire and measured and theoretically simulated thermal conductivity of the nanowire. The thermal conductivity of rough Si0.96Ge0.04 nanowire is an order of magnitude lower than that of bulk Si0.96Ge0.04 and around a factor of four times lower than that of smooth Si0.96Ge0.04 nanowire. This significant reduction could be explained by the fact that the surface roughness scatters medium-wavelength phonons, whereas the long-wavelength phonons are scattered by phonon boundary scattering, and the short-wavelength phonons are scattered by alloy scattering.  相似文献   

6.
Tuning the thermal conductivity of silicon nanowires(Si-NWs)is essential for realization of future thermoelectric devices.The corresponding management of thermal transport is strongly related to the scattering of phonons,which are the primary heat carriers in Si-NWs.Using the molecular dynamics method,we find that the scattering of phonons from internal body defects is stronger than that from surface structures in the low-porosity range.Based on our simulations,we propose the concept of an exponential decay in thermal conductivity with porosity,specifically in the low-porosity range.In contrast,the thermal conductivity of Si-NWs with a higher porosity approaches the amorphous limit,and is insensitive to specific phonon scattering processes.Our findings contribute to a better understanding of the tuning of thermal conductivity in Si-NWs by means of patterned nanostructures,and may provide valuable insights into the optimal design of one-dimensional thermoelectric materials.  相似文献   

7.
《Current Applied Physics》2018,18(12):1540-1545
SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ∼ 1.1 at 900 °C in n-type Si80Ge20 nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ∼ 3.4 × 107 K/s, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ∼7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ∼2.1 Wm−1K−1, which corresponds to ∼50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.  相似文献   

8.
The thermal conductivity of disordered silicon-germanium alloys is computed from density-functional perturbation theory and with relaxation times that include both harmonic and anharmonic scattering terms. We show that this approach yields an excellent agreement at all compositions with experimental results and provides clear design rules for the engineering of nanostructured thermoelectrics. For Si(x)Ge(1-x), more than 50% of the heat is carried at room temperature by phonons of mean free path greater than 1 μm, and an addition of as little as 12% Ge is sufficient to reduce the thermal conductivity to the minimum value achievable through alloying. Intriguingly, mass disorder is found to increase the anharmonic scattering of phonons through a modification of their vibration eigenmodes, resulting in an increase of 15% in thermal resistivity.  相似文献   

9.
The effect of dispersion on the focusing of thermal phonons and on the thermal conductivity of silicon single crystals in the boundary scattering regime has been investigated. Analysis of the spectra of acoustic modes obtained for silicon single crystals from inelastic neutron scattering data has demonstrated that, upon transition from long-wavelength phonons to short-wavelength phonons, the directions of their focusing change. With an increase in temperature, this leads to a change in the anisotropy of thermal conductivity of phonons with different polarizations and, consequently, to a change in the anisotropy of the total thermal conductivity. Analysis of the temperature dependence of the thermal conductivity has revealed that the presence of extended flattened sections in the spectrum of short-wavelength transverse phonons indicates anomalously low values of the group velocity and, accordingly, a significant decrease in the contribution from these phonons to the thermal conductivity with increasing temperature. The contribution from longitudinal phonons to the thermal conductivity also significantly increases even at temperatures higher than 110 K and becomes dominant.  相似文献   

10.
The atomic and electronic structures of ErAs nanoparticles embedded within a GaAs matrix are examined via cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/XSTS). The local density of states (LDOS) exhibits a finite minimum at the Fermi level demonstrating that the nanoparticles remain semimetallic despite the predictions of previous models of quantum confinement in ErAs. We also use XSTS to measure changes in the LDOS across the ErAs/GaAs interface and propose that the interface atomic structure results in electronic states that prevent the opening of a band gap.  相似文献   

11.
The glass-forming ability (GFA) of an alloy in this case is the largest diameter of a rod which can be cast fully glassy. The present work shows that the thermal conductivity of a liquid alloy has a strong effect on GFA by influencing the cooling rate upon mould casting. The initial cooling rates (for the first 70–100?K of temperature decrease), obtained for Cu-, Zr- and Au-based bulk glass-forming alloys in the liquid state, are found to scale linearly with the thermal conductivities of the liquid base elements. However the low cooling rate found for Ni-based alloy suggests that the heat transfer at the melt–mould interface may also influence the cooling rate. The low thermal conductivity of Ni-based alloys and the correspondingly low cooling rate obtained compared to Cu-based counterparts explains their lower GFA. In the literature, many factors influencing the GFA of alloys have been discussed. To these factors, the present study adds the thermal conductivity of the molten alloy and the melt–mould heat-transfer coefficient. Moreover, the cooling rate depends on temperature and, thus, the critical cooling rate itself is not a suitable parameter for indicating GFA. The cooling can be better described by an appropriate fitting of the cooling curve to an exponential temperature decay function.  相似文献   

12.
The thermal conductivity of free-standing silicon nanowires (SiNWs) with diameters from 1-3?nm has been studied by using the one-dimensional Boltzmann's transport equation. Our model explicitly accounts for the Umklapp scattering process and electron-phonon coupling effects in the calculation of the phonon scattering rates. The role of the electron-phonon coupling in the heat transport is relatively small for large silicon nanowires. It is found that the effect of the electron-phonon coupling on the thermal conduction is enhanced as the diameter of the silicon nanowires decreases. Electrons in the conduction band scatter low-energy phonons effectively where surface modes dominate, resulting in a smaller thermal conductivity. Neglecting the electron-phonon coupling leads to overestimation of the thermal transport for ultra-thin SiNWs. The detailed study of the phonon density of states from the surface atoms and central atoms shows a better understanding of the nontrivial size dependence of the heat transport in silicon nanowire.  相似文献   

13.
The feasibility of enhancing the thermal conductivity of an alloy via microstructural refinement was examined using Al–12%Si alloy as a model material. Al–12Si alloy samples were fabricated at different process parameters using laser engineered net shaping (LENS?) and the effect of microstructural features on the thermal conductivity was studied and compared with conventionally cast alloy. The large difference in melting points and laser light absorptivities of Si and Al as well as the low melt viscosity of Al–12Si alloy resulted in a very small process window to successfully fabricate bulk Al–12Si alloy samples using LENS?. Comparison of microstructural features of laser-processed samples with cast Al–12Si alloy showed significant refinement in eutectic Si for laser processed samples. Microstructural refinement not only improved the thermal conductivity of Al–12Si alloy but also compensated the detrimental effect of porosity on thermal conductivity. The thermal conductivity of cast alloy varied between 82 and 93?W/mK, which is ~21–76% lower than the values exhibited by laser-processed samples in the range 103–153?W/mK. The results of LENS? fabrication, microstructural evolution and thermal properties of Al–12Si alloy bulk structures can be extended to other immiscible alloys and metal matrix composites for a variety of engineering applications.  相似文献   

14.
Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements’ distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.  相似文献   

15.
吴子华  谢华清*  曾庆峰 《物理学报》2013,62(9):97301-097301
ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率. 关键词: 热电材料 ZnO 纳米复合 热导率  相似文献   

16.
Room-temperature attenuation measurements are made between lambda=0.8 and 10.0 microm on three GaAs epitaxial samples containing layers of ErAs nanoparticles. An asymmetric attenuation peak is observed around 2.5 microm that increases in strength with ErAs density, and is modeled well by a Maxwell-Garnett formulation and semiclassical transport theory. The nanoparticles are assigned a distribution function of oblate spheroids having a minimum volume corresponding to a 1.0-nm sphere. This is consistent with the self-organizing tendency of ErAs in GaAs, and explains the sharp attenuation peak as a spherical-particle surface-plasmon (i.e., Fr?hlich) resonance.  相似文献   

17.
The volume (pressure) dependence of the thermal conductivity for a number of glasses has been evaluated. The calculation is based on a simple model, assuming the thermal conductivity of the glass to be equal to the minimum of the thermal conductivity, and treating the acoustical phonons by a continuum Debye model, and the optical phonons by an Einstein type model. For SiO2 based glasses, the logarithmic volume derivative of the thermal conductivity turns out to be small, with both positive and negative values occurring, while for the chalcogenide glass As2S3 this quantity is appreciably larger and positive.  相似文献   

18.
Homogeneous CuO/SiO2 and NiO/SiO2 nanocomposite coatings containing CuO and NiO nanoparticles in silica matrix were successfully synthesized by sol–gel process on an aluminum alloy substrate, respectively. The evolution of phase and morphology of both nanocomposites was characterized by XRD, SEM, TEM and FTIR. The effect of incorporating various nanoparticles on the corrosion behavior and the thermal conductivity of nanocomposite coatings was investigated by potentiodynamic polarization curve and comparative exponential method. The thermal conductivity as well as the corrosion resistance of nanocomposite coatings was significantly improved by the introduction of metal oxide particles. In comparison with NiO/SiO2 nanocomposite coatings, CuO/SiO2 composite coatings displayed lower protective behavior as well as higher thermal conductivity. Experimental results revealed that those improvements can directly be related to the nanocomposite effect and the nature of added nanoparticles.  相似文献   

19.
Measurements of the electronic thermal conductivity of superconducting lead and lead-manganese-alloys are reported. The samples are quench condensed-films. The thermal conductance of lead films is in good agreement with the BRT-theory. In spite of lead-manganese perhaps being a Kondo-system the thermal conductivity of this alloy is reasonably well described by the Ambegaokar-Griffin theory. Our measurements do not agree with those on indium-manganese alloys reported by other authors.  相似文献   

20.
The role of the peripheral and non-peripheral phonons in the estimation of the lattice thermal conductivity of a metal has been studied at low temperatures by calculating their separate contributions towards the total lattice thermal conductivity. The study is made in the temperature range 0.4–2.5 K with the help of the Ziman expression for the scattering of phonons by the charge carriers and the Callaway expression of the phonon conductivity, and Sb is taken as an example. The separate percentage contributions due to peripheral and non-peripheral phonons have also been studied and it is found that the percentage contribution due to peripheral phonons increases with increasing temperature while the percentage contribution due to non-peripheral phonons decreases with increasing temperature. The percentage contributions of the lattice thermal resistivities due to electrons and holes towards the total lattice thermal resistivity of Sb have also been reported in the present note.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号