首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An orbital ordering transition and electronic phase coexistence have been discovered in SrCrO3. This cubic, orbitally-degenerate perovskite transforms to a tetragonal phase with partial orbital order. The tetragonal phase is antiferromagnetic below 35-40 K, whereas the cubic phase remains paramagnetic at low temperatures. The orbital ordering temperature (35-70 K) and coexistence of the two electronic phases are very sensitive to lattice strain. X-ray measurements show a preferential conversion of the most strained regions in the cubic phase. This reveals that small fluctuations in microstrain are sufficient to drive long range separation of competing electronic phases even in undoped cubic oxides.  相似文献   

2.
The possibility of phase separation in the substances with orbital ordering is analyzed. The additional charge carriers introduced due to doping favor the formation of nanosize inhomogeneities with the orbital structure different from that in the undoped material. The shapes and sizes of such inhomogeneities are determined.  相似文献   

3.
4.
王文彬  朱银燕  殷立峰  沈健 《物理学报》2018,67(22):227502-227502
复杂氧化物可以呈现出高温超导、庞磁阻以及多铁效应等诸多新奇的物理现象.这类材料中的电荷/自旋/轨道和晶格自由度之间的强耦合相互作用,可以导致多种相互竞争且能量非常接近的电子态的空间共存,这就是电子相分离现象.如果可以将材料的空间尺寸缩小到电子相分离的特征长度,其物理性质甚至电子关联作用本身都会发生根本的变化,从而有可能实现复杂氧化物中的量子调控.本文综述了我们课题组在过去几年中针对复杂氧化物中电子相分离的量子调控取得的进展,内容包括:发现了锰氧化物边缘电子态,通过氧化物微纳加工技术,实现了量子态空间分布的调控,提高了庞磁阻锰氧化物的临界温度;研究了当材料空间尺度小于其电子相分离特征尺度时电子相分离的表现,确定了在电子相分离消失以后体系的磁结构;通过超晶格生长技术调控了材料中的掺杂有序度,对锰氧化物中大尺度的电子相分离的物理机理从实验上给出了解释.  相似文献   

5.
In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand the high temperature superconductivity. As an illustration, we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space. The typical spin and charge orderings are shown by choosing appropriate parameters, which are in good agreement with experiments. We also show the effect of Fe vacancies, which can introduce the nematic phase and interesting magnetic ground states. The orbital ordering is also discussed in iron-based superconductors. It is found that disorder may play a role to produce the superconductivity.  相似文献   

6.
刘大勇  陈东猛  邹良剑 《中国物理 B》2009,18(10):4497-4505
Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jz/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.  相似文献   

7.
The nuclear magnetic relaxation of 169Tm in TmBa2Cu3O6+x (x=0.1–1.0, Δ x=0.1) and TmBa2Cu4O8 is studied at temperatures below 5 K. In all the samples, the Tm spin-lattice relaxation proceeds via intrinsic paramagnetic centers (PCs) like Cu2+ or copper-oxygen spin-polarized clusters. The experimental data for TmBa2Cu3O6+x support the idea of the structural (chemical) micro-phase separation in oxygen-deficient 123 compounds. Apparently, the samples with x⩾0.4 contain hole-poor nonsuperconducting regions, enriched with PCs, and hole-rich (PC-poor) superconducting regions. The volume fraction f n of the PC-rich phase reaches a maximum value of 0.85 at x=0.4 and decreases monotonically with increasing x (f n=0.5, 0.3, and 0.25 at x=0.5, 0.6, and 0.7, respectively). The Tm spin-lattice relaxation in the underdoped TmBa2Cu4O8 compound indicates that this sample, in contrast to oxygen-deficient TmBa2Cu3O6+x , has a homogeneous composition. However, the Tm spin-spin relaxation measurements reveal two sorts of the Tm nuclear spins in Tm124, having different NMR spectra and different relaxation times T 2. The latter result is evidence of electronic phase separation in CuO2 phases. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 5, 365–370 (10 September 1996) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

8.
C.F.S. Pinheiro 《Physica A》2012,391(4):1532-1539
The resistivity as a function of temperature for high temperature superconductors is very unusual and, despite its importance, lacks a unified theoretical explanation. It is linear with the temperature for overdoped compounds but it falls more quickly as the doping level decreases. The resistivity of underdoped cuprates increases like that of an insulator below a characteristic temperature where it shows a minimum. We show that this overall behavior can be explained by calculations using an electronic phase segregation into two main component phases with low and high electronic densities. The total resistance is calculated from the various contributions through several processes of random picking of the local resistivities and using a common statistical random resistor network approach.  相似文献   

9.
We have measured and theoretically analyzed the diffuse scattering in the binary alloy system Au-Ni, which has been proposed as a testing ground for theories of alloy phase stability. We found strong evidence that in the alloys Au3Ni and Au3Ni2, fluctuations of both ordering- and clustering-type are competing with each other. Our results resolve a long-standing controversy on the balance of relaxation and mixing energies in this alloy system and explain recent findings of ordering in thin Au-Ni films.  相似文献   

10.
Using single crystal susceptibility, Mössbauer and magnetoelectric measurements, the nature of the two low temperature phase transitions in the clinopyroxine metagermanate FeGeO3 is studied. It is concluded that FeGeO3 orders antiferromagnetically along the unique b axis at TN = 47 ± 1°K and undergoes a spontaneous, second-order phase transition of the spin reorientation type at TR = 17 ± 3°K. Only below TR does FeGeO3 exhibit magnetoelectricity.  相似文献   

11.
12.
13.
We report the results of Cu and La NQR investigations of the spin and charge separation in La2−xBaxCuO4 compounds. For Ba doping inducing the low-temperature tetragonal phase our Cu–NQR measurements revealed three inequivalent Cu sites in CuO2 planes. In terms of the stripe-phase picture we assign them to the charged stripe, to its neighborhood and to the AF correlated regions free of holes correspondingly. The last site corresponds to the ordered Cu magnetic moment of 0.29μB.  相似文献   

14.
15.
16.
Both electronic phase separation occuring at impurity frozen, and the impurity phase separation occuring at mobile impurity are investigated for the case of quasi-two-dimensional degenerate magnetic semiconductors to which HTSC's belong. The optimum geometry for the electronic phase separated state is found, and its energy is evaluated. According to these evaluations, the electronic phase separation is not forbidden for HTSC's. The impurity phase separation is calculated with the aid of the jellium model for the impurity metal generalized for the two-dimensional case. At realistic parameters both the impurity-magnetic phases arising as a result of phase separation may be high-conducting or even superconducting.  相似文献   

17.
55Mn NMR line shape measurements in La1-xCaxMnO3 for 0.20< or =x< or =0.50 provide experimental evidence about the existence of two distinct regions in the T-x magnetic phase diagram, where the homogeneous ferromagnetic (FM) metallic state is separated into FM metallic and FM insulating regions. These results are in agreement with recent theoretical predictions, which reveal a novel electronic phase separation in two FM states, providing orbital ordering and Jahn-Teller phonons are taken into consideration.  相似文献   

18.
In the underdoped high temperature superconductors, instead of a complete Fermi surface above Tc, only disconnected Fermi arcs appear, separated by regions that still exhibit an energy gap. We show that in this pseudogap phase, the energy-momentum relation of electronic excitations near EF behaves like the dispersion of a normal metal on the Fermi arcs, but like that of a superconductor in the gapped regions. We argue that this dichotomy in the dispersion is difficult to reconcile with a competing order parameter, but is consistent with pairing without condensation.  相似文献   

19.
A general criterion for the existence of phase separation in driven density-conserving one-dimensional systems is proposed. It is suggested that phase separation is related to the size dependence of the steady-state currents of domains in the system. A quantitative criterion for the existence of phase separation is conjectured using a correspondence made between driven diffusive models and zero-range processes. The criterion is verified in all cases where analytical results are available, and predictions for other models are provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号