首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
关于拟线性反应扩散方程和方程组的一种单调方法   总被引:1,自引:0,他引:1  
在利用上、下解方法讨论拟线性和拟线性抛物型方程组的渐近性质,blow-up现象时,经常发生这样的问题,就是在上、下解之间,拟线性抛物型方程或方程组是否存在解,这个问题在半线性反应扩散方程巳经得到解决,本文目的,就是证明拟线性反应扩散方程和方程组在上、下解之间一定存在解且只有一个,并用单调方法构造这个解。  相似文献   

2.
§1.引言 用差分法解微分方程的各种问题,最终都归结为相应差分方程的求解问题。如果微分方程是线性的,则相应的差分方程是线代数方程组;在相反的情况下,差分方程一般为非线性代数或超越方程组。 对线性情形,椭圆差分方程的求解问题十分重要。因为第一、由椭圆微分方程导出  相似文献   

3.
本文讨论了逼近两个自变量的拟线性双曲方程组具可动边界。且边界条件为非线性的初边值问题的非穿行差分方法的收敛性。这类问题来源于求解拟线性双曲方程组的初边值问题的分离奇性法。  相似文献   

4.
一类求行波解的线性方法   总被引:2,自引:0,他引:2  
基于齐次平衡法和李志斌的 tanh函数法 ,本文得到一类简单有效的求解非线性发展方程的线性方法 .这类方法利用非线性发展方程孤立波的局部性特点 ,适当地选取函数 f 和 g,将孤波表示为 f,g的多项式 ,从而将非线性发展方程求解问题转化为非线性代数方程组的求解问题 ,再利用吴消元法求解方程组从而得到非线性发展方程的行波解  相似文献   

5.
拟线性正对称方程组的边值问题及其对混合型方程的应用   总被引:4,自引:0,他引:4  
谷超豪 《数学学报》1978,21(2):119-129
<正> 1.引言 本文有两个目的.第一个目的是讨论拟线性正对称方程组的边值问题.如所知,线性的正对称方程组是一类相当广泛的偏微分方程组,许多常见的偏微分方程都可以化为正对称方程组去.对于这个方程组,可以利用能量不等式来证明许多边值问题的适定性.本文充分利用线性正对称方程组的结果,经过适当的估计,用压缩映照原理证明了拟线性正对称方程组的边值问题的解的存在性.对求解的区域而言,问题是大范围的,但  相似文献   

6.
提出了一种求解线性和非线性对流扩散方程的流函数松弛方法.方法的主要思想是利用流函数松弛近似将原始的方程转化成等价的松弛方程组,新的松弛方程组是带源项的双曲系统.通过稳定性分析可以知道新系统的耗散系数可由松弛系数调整.数值实现亦证明这个方法可以快速有效地描述对流扩散方程的解.  相似文献   

7.
研究(2+1)维拟线性扩散方程的精确解问题.运用推广的不变集方法,给出(2+1)维拟线性扩散方程的一些特殊解.此方法是(1+1)维拟线性扩散方程的推广.  相似文献   

8.
热传导型半导体器件瞬态问题的数学模型由四个拟线性偏微分方程所组成的方程组的初边值问题来描述。其中电子位势方程是椭圆型的,电子和空穴浓度方程是对流扩散型的,温度方程为热传导型的。本文对二维热传导型半导体的一类混合初边值问题利用降阶法给出了一个二阶差分格式,并对其进行了详细的理论分析,得到了离散的犾2 误差估计结果。  相似文献   

9.
Petrov-Galerkin 方法是研究Cauchy型奇异积分方程的最基本的数值方法. 用此方法离散积分方程可得一系数矩阵是稠密的线性方程组. 如果方程组的阶比较大, 则求解此方程组所需要的计算复杂度则会变得很大. 因此, 发展此类方程的快速数值算法就变成了必然. 该文将就对带常系数的Cauchy型奇异积分方程给出一种快速数值方法. 首先用一稀疏矩阵来代替稠密系数矩阵, 其次用数值积分公式离散上述方程组得到其完全离散的形式,然后用多层扩充方法求解此完全离散的线性方程组. 证明经过上述过程得到方程组的逼进解仍然保持了最优阶, 并且整个过程所需要的计算复杂度是拟线性的. 最后通过数值实验证明结论.  相似文献   

10.
一、引 言 对于一阶线性偏微分方程和一阶线性双曲型方程组的有限元方法的误差分析,已有不少结果。本文讨论的是一类拟线性双曲型方程组的有限元方法的误差问题. 本文的结果对N个方程的方程组成立。为了方便起见,考虑如下的二个方程的方程组:  相似文献   

11.
An iterative method for solving equations of multidimensional bicompact schemes based on an approximate factorization of their difference operators is proposed for the first time. Its algorithm is described as applied to a system of two-dimensional nonhomogeneous quasilinear hyperbolic equations. The convergence of the iterative method is proved in the case of the two-dimensional homogeneous linear advection equation. The performance of the method is demonstrated on two numerical examples. It is shown that the method preserves a high (greater than the second) order of accuracy in time and performs 3–4 times faster than Newton’s method. Moreover, the method can be efficiently parallelized.  相似文献   

12.
陈绍仲 《数学学报》1997,40(3):333-344
本文用随机分析方法证明了拟线性抛物型方程ut+f(u)ux、uxx=0,u(0,x)=u0(x)在u0有界可测,f连续且f>0条件下,其解当→0时收敛于拟线性方程ut+f(u)ux=0,u(0,x)=u0(x)的熵解,即论证了“沾性消失法”解此方程的正确性,1957年Oleinik曾用差分方法解决了此问题。这里用概率方法重新获得此结果。  相似文献   

13.
For linear singularly perturbed boundary value problems, we come up with a method that reduces solving a differential problem to a discrete (difference) problem. Difference equations, which are an exact analog of differential equations, are constructed by the factorization method. Coefficients of difference equations are calculated by solving Cauchy problems for first-order differential equations. In this case nonlinear Ricatti equations with a small parameter are solved by asymptotic methods, and solving linear equations reduces to computing quadratures. A solution for quasilinear singularly perturbed equations is obtained by means of an implicit relaxation method. A solution to a linearized problem is calculated by analogy with a linear problem at each iterative step. The method is tested against solutions to the known Lagerstrom-Cole problem.  相似文献   

14.
三维半导体问题的迎风有限体积格式   总被引:1,自引:0,他引:1       下载免费PDF全文
半导体器件的瞬时状态由包含三个拟线性偏微分方程所组成的方程组的初边值问题来描述.其中电子位势方程是椭圆型的,电子和空穴浓度方程是对流扩散型的.作者对三维半导体模型问题采用四面体网格上的有限体积元方法进行逼近,具体地,对电子位势方程采用一次元有限体积法来逼近,对电子浓度和空穴浓度方程采用迎风有限体积方法来逼近,并进行了详细的理论分析,得到了O(h+\Delta t)阶的L^2模误差估计结果.  相似文献   

15.
In this paper, a numerical method named as Initial Value Technique (IVT) is suggested to solve the singularly perturbed boundary value problem for the second order ordinary differential equations of convection–diffusion type with a delay (negative shift). In this technique, the original problem of solving the second order equation is reduced to solving two first order differential equations, one of which is singularly perturbed without delay and other one is regular with a delay term. The singularly perturbed problem is solved by the second order hybrid finite difference scheme, whereas the delay problem is solved by the fourth order Runge–Kutta method with Hermite interpolation. An error estimate is derived by using the supremum norm. Numerical results are provided to illustrate the theoretical results.  相似文献   

16.
An initial boundary-value problem for a quasilinear system of partial differential equations with a nonlocal boundary condition involving a delayed argument is considered. The existence of a unique solution to this problem is proved by reducing it to a system of nonlinear integral-functional equations. The inverse problem of finding a solution-dependent coefficient of the system from additional information on a solution component specified at a fixed point of space as a function of time is formulated. The uniqueness of the solution of the inverse problem is proved. The proof is based on the derivation and analysis of an integral-functional equation for the difference between two solutions of the inverse problem.  相似文献   

17.
Motivated by the desire to model the entry of 1,25D into a cell by receptor mediated endocytosis, we have formulated the problem as the dynamics of a bilayer membrane. We have discussed setting the problem as a variational problem using the Helfrich modeling of the bilayer in terms of the free energy. Using a Lagrangian formulation we arrive at the Euler–Lagrange equations for the system. The model we have used depends on the amount of reagent in the neighborhood of the upper membrane. The problem thereby reduces to a moving boundary problem, which is dependent on a diffusion equation for a region changing with time. In order to solve this problem we seek the correct Neumann function for this altered. This is accomplished by deriving a Hadamard variational formula for the diffusion equation. We also offer an iterative procedure for solving this non-linear problem.  相似文献   

18.
In the article classical solutions of initial problems for nonlinear differential equations with deviated variables are approximated by solutions of quasilinear systems of difference equations. Interpolating operators on the Haar pyramid are used. Sufficient conditions for the convergence of the method are given. The proof of the stability of the difference problem is based on a comparison method. This new approach to solving nonlinear equations with deviated variables numerically is based on a method of linearization for initial problems. Numerical examples are given. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

19.
For quasilinear systems of hyperbolic equations, the nonclassical boundary value problem of controlling solutions with the help of boundary conditions is considered. Previously, this problem was extensively studied in the case of the simplest hyperbolic equations, namely, the scalar wave equation and certain linear systems. The corresponding problem formulations and numerical solution algorithms are extended to nonlinear (quasilinear and conservative) systems of hyperbolic equations. Some numerical (grid-characteristic) methods are considered that were previously used to solve the above problems. They include explicit and implicit conservative difference schemes on compact stencils that are linearizations of Godunov’s method. The numerical algorithms and methods are tested as applied to well-known linear examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号