首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

2.
This work presents experimental results concerning an actively Q-switched intracavity frequency-doubled Nd:LuVO4/LBO green laser with an acousto-optic modulator operated at the wavelength of 0.53 μm. The green average output power of 2.8 W was obtained at a pump power of 16.3 W and a pulse repetition rate of 20 kHz, resulting in an optical conversion efficiency of 17%. When the pulse repetition rate is operated at 5 kHz, the shortest pulse width and the highest peak power at 0.53 μm were measured to be 26.5 ns and 8.43 kW, respectively.  相似文献   

3.
刘欢  巩马理 《物理学报》2009,58(8):5443-5449
报道了一台LD端面抽运Nd:YAG晶体内腔三倍频355 nm激光高效率、高峰值功率准连续输出的全固态紫外激光器.激光腔采用紧凑型平平直腔,腔长仅106 mm.当注入抽运功率为5.73 W、重复频率为9 kHz时,获得163 mW的355 nm激光准连续输出,光光转换效率达到最高2.84%.当注入抽运功率为6.7 W重复频率为5 kHz时,获得最高174 mW的355 nm激光准连续输出,输出功率短期不稳定性为5%,光束质量因子M2为3.79.当注入抽运功率为5.73 W、重复频率为2 kHz时,获得112 mW的355 nm激光准连续输出,峰值功率最高达到9.15 kW.通过采用内腔倍频技术和设计合理的腔结构,实现了中小功率准连续输出的全固态紫外激光器的小型化、便携化,进一步拓宽了紫外激光器的应用领域. 关键词: LD端面抽运 内腔三倍频 Q')" href="#">声光调Q 紫外激光  相似文献   

4.
An efficient laser diode end-pumped continuous-wave (CW) and AO Q-switched laser of Nd:LiLuF4 crystal with dual central wavelengths of 1053.1 and 1054.7 nm is reported for the first time. The maximum CW output power of 6.22 W was obtained at absorbed pump power of ∼14.6 W with the output transmission of 2%. The optical conversion efficiency is ∼43%, corresponding to a slope efficiency of about 48% with respect to the absorbed pump. For the Q-switched operation, the shortest pulse width of 17 ns was obtained at the pulse repetition frequency (PRF) of 0.5 kHz, resulting in a pulse energy of 2.24 mJ and peak power of 131.8 kW.  相似文献   

5.
An AlGaInAs multiple quantum well structure is reported as an effective gain medium of the in-well pumped high-peak-power semiconductor disk laser at 1.2 μm. We use an Yb-doped pulsed fiber amplifier as the pump source to effectively optimize the output characteristics. The maximum average output power of 1.28 W and peak output power of 0.76 kW is obtained at 1225 nm lasing wavelength under 60 kHz pump repetition rate and 28 ns pump pulse width.  相似文献   

6.
We report on an efficient high-power passively Q-switched UV laser at 355 nm. We take into account the second threshold criterion and the thermal-lensing effect to design and realize a compact reliable passively Q-switched Nd:YVO4 laser with Cr4+:YAG as a saturable absorber. At an incident pump power of 16.3 W, the average output power at 1064 nm reaches 6.2 W with a pulse width of 7 ns and a pulse repetition rate of 56 kHz. Employing the developed passively Q-switched laser to perform the extra-cavity harmonic generations, the maximum average output powers at 532 nm and 355 nm are up to 2.2 W and 1.62 W, respectively.  相似文献   

7.
A diode-end-pumped high repetition rate, high peak power acousto-optical (AO) Q-switched 946 nm Nd:YAG laser was demonstrated in this paper. In our experiments, a 20 mm miniature acousto-optical Q-switch was employed in a 45 mm linear laser cavity for generating the short laser pulse. At a repetition rate of 10 kHz, a maximum average output power of 2.9 W was achieved with a pulse width of 24.4 ns, giving a peak power of 11.9 kW. To the best of our knowledge, this is the highest peak power 946 nm Nd:YAG laser at high repetition rate operation. Moreover, pulse train with good stability was also obtained at the repetition rate of 50 kHz. At an incident pump power of 22.3 W, up to an average output power of 3.5 W pulsed 946 nm laser was generated at 50 kHz with a pulse width of 69 ns, corresponding to an optical conversion efficiency of 15.7% and an average slope efficiency of 24.1%, respectively.  相似文献   

8.
Su KW  Huang SC  Li A  Liu SC  Chen YF  Huang KF 《Optics letters》2006,31(13):2009-2011
We report a room-temperature high-peak-power AlGaInAs 1.36 microm TEM00 laser pumped by a diode-pumped actively Q-switched Nd:YAG 1.06 microm laser. With an average pump power of 1.0 W, an average output power of 140 mW was obtained at a pulse repetition rate of 10 kHz. With a peak pump power of 8.3 kW, the highest peak output power was 1.5 kW at a pulse repetition rate of 5 kHz.  相似文献   

9.
C. Xu  G. Li  S. Zhao  X. Li  K. Cheng  G. Zhang  T. Li 《Laser Physics》2010,20(6):1335-1340
We have realized, for the first time to our knowledge, the passive Q-switching operation of an LD-pumped Nd:GdVO4 laser at 1342 nm with V:YAG saturable absorber of initial transmission as high as 96%. This laser is investigated under different transmissions of the output coupler. The dependences of average output power, pulse width, pulse repetition rate, single-pulse energy and peak power on incident pump power are also measured. The shortest pulse width of 80 ns, the maximum single-pulse energy of 19.5 μJ and the highest peak power of 244 W are obtained with the output coupler of T = 15% and the pump power of 7.93 W. We find a special experimental phenomenon that the pulse repetition rate begins to drop after reaching the peak with the increase of the pump power. This phenomenon is analyzed and the theoretical calculations are consistent with the experimental results.  相似文献   

10.
We report on a compact efficient high-repetition-rate (>100?kHz) optically pumped AlGaInAs nanosecond eye-safe laser at 1525?nm. A?diamond heat spreader bonded to the gain chip is employed to improve the heat removal. At a pump power of 13.3?W, the average output power at a repetition rate 200?kHz is up to 3.12?W, corresponding to a peak output power of 560?W. At a repetition rate 500?kHz, the maximum average power and peak power are found to be 2.32?W and 170?W, respectively.  相似文献   

11.
F. Chen  W. W. Wang  J. Liu 《Laser Physics》2010,20(2):454-457
By simple extra-cavity frequency conversion, the performance of a diode single-end-pumped AO Q-switched Nd:GdVO4/KTP/BBO 266 nm laser was demonstrated. Under the incident pump power of 14.32 W, the maximum average output power at 266 nm was 374 mW at the repetition of 20 kHz; the opticaloptical conversion efficiency was 2.6%. The corresponding pulse width was 5 ns, with the single-pulse energy and peak power calculated to be 18.7 μJ and 3.74 kW, respectively. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

12.
An LD-pumped Nd:YVO4 passively Q-switched by V:YAG and intracavity frequency doubled by LBO red pulse laser at 671 nm was presented. With 1.6 W incident pump power, average output power of 53 mW, pulse duration (FWHM) of 29.5 ns, pulse repetition rate of 37.2 kHz, peak power of 48.3 W and single-pulse energy of 1.43 μJ were obtained. The stability of pulse energy and repetition rate was better than 3% for 4 h.  相似文献   

13.
A compact efficient diode-end-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 355 μm ultraviolet laser was realized. Intracavity sub-resonators with anti-reflection and high-reflection coated mirrors were used to get higher efficiency of third harmonic generation. With two LBO crystals used in frequency doubling and tripling processes, greater than 1.46 W 355 nm average output power was obtained under the absorbed pump power of 13.9 W and the repetition rate of 10 kHz. The corresponding pump-to-ultraviolet conversion efficiency was determined to be as high as 10.5%. At 10 kHz, the minimize pulse width was obtained to be 12 ns with the peak power of 10.4 kW and single pulse energy of 146 μJ.  相似文献   

14.
Intra-cavity sum frequency generation (SFG) of c-cut Nd:YVO4 self-Raman laser was investigated for the first time. A 4 × 4 × 10 mm3 KTP crystal with a type-II phase-matching cutting angle (θ = 83.4°, φ = 0°) was used for SFG between the fundamental light at 1066 nm and first-Stokes light at 1178 nm. The laser system with different curvature radii of output couplers and different pulse repetition frequencies were investigated. At a pump power of 14 W and pulse repetition frequency of 20 kHz, the average output power of yellow-green laser at 560 nm up to 840 mW was achieved, corresponding to a slope efficiency of 7.6% and a conversion efficiency of 6% with respect to diode pump power.  相似文献   

15.
A diode-pumped passively Q-switched Nd:LuVO4 1.34 μm laser using Co:LMA saturable absorber was successfully demonstrated. The average output power, pulse width, repetition rate of a-cut and c-cut Nd:LuVO4 lasers were studied with different output couplers. The maximum average output power of 164 mW was obtained at the pump power of 10.3 W and the narrowest pulse width of 168 ns was achieved at repetition rate of 457 kHz under pump power of 8.59 W in a-cut Nd:LuVO4 laser with T = 8%.  相似文献   

16.
We have investigated acoustic-optical Q-switched Tm,Ho:YLF laser end-pumped by a laser-diode. At room temperature, a 2.067 μm wavelength pulsed output is realized. Average output power, single pulse energy and pulse-width are measured at different incident pump powers and pulse repetition frequencies. When the incident pump power is 2.8 W, a maximum average output power of 189 mW is obtained at the repetition frequency of 9 kHz, and this corresponds to an optical conversion efficiency of 6.8%. The maximum single pulse energy of 65μJ, the shortest pulse-width with full-width at half-maximum (FWHM) of 138 ns and the maximum peak power of 470 W are obtained at the pulse repetition frequency of 1 kHz.  相似文献   

17.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

18.
An end-pumped Nd:YVO4 laser fiber-coupled diode was designed. A maximum output power of 4.74 W TEM00 mode CW laser was obtained for a pump power of 10.5 W. The optical efficiency and slope efficiency were measured as 45.1 and 57.8% at 1064 nm, respectively. In Q-switching operation, 4.45 W average power at a pulse repletion rate of 5 kHz was produced, with a stability of pulse peak value <2%.  相似文献   

19.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

20.
We improved the electro-optical cavity-dumped Nd:GdVO4 laser performance at high repetition rates by employing continuous-grown GdVO4/Nd:GdVO4 composite crystal under 879 nm diode-laser pumping. A constant 3.8 ns duration pulsed laser was obtained and the repetition rate could reach up to 100 kHz with a maximum average output power of 13.1 W and a slope efficiency of 56.4%, corresponding to a peak power of 34.4 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号