首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discrete Element Methods (DEM) are a useful tool to model the fracture of cohesive granular materials. For this kind of application, simple particle shapes (discs in 2D, spheres in 3D) are usually employed. However, dealing with more general particle shapes allows to account for the natural heterogeneity of grains inside real materials. We present a discrete model allowing to mimic cohesion between contacting or non-contacting particles whatever their shape in 2D and 3D. The cohesive interactions are made of cohesion points placed on interacting particles, with the aim of representing a cohesive phase lying between the grains. Contact situations are solved according to unilateral contact and Coulomb friction laws. In order to test the developed model, 2D uniaxial compression simulations are performed. Numerical results show the ability of the model to mimic the macroscopic behavior of an aggregate grain subject to axial compression, as well as fracture initiation and propagation. A study of the influence of model and sample parameters provides important information on the ability of the model to reproduce various behaviors.  相似文献   

2.
The influence of the austenitic grain size on the overall stress–strain behavior in a multiphase carbon steel is analyzed through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is combined with a plasticity model to simulate the transformation-induced plasticity effects of a grain of retained austenite embedded in a ferrite-based matrix. Grain size effects are included via a surface energy term in the Helmholtz energy. Tensile simulations for representative orientations of the grain of retained austenite show that the initial stability of the austenite increases as the grain size decreases. Consequently, the effective strength is initially higher for smaller grains. The influence of the grain size on the evolution of the transformation process strongly depends on the grain orientation. For “hard” orientations, the transformation rate is higher for larger grains. In addition, the phase transformation is partially suppressed as the grain size decreases. In contrast, for “soft” orientations, the transformation rate is lower for larger grains. The phase transformation is more homogeneous for smaller grains and, consequently, the effective transformation strain is larger. Nevertheless, in multiphase carbon steels with a relatively low percentage of retained austenite, the influence of the austenitic grain size on the overall constitutive response is smaller than the influence of the austenitic grain orientation.  相似文献   

3.
This work investigates a new micromechanical modeling of polycrystal plasticity, accounting slip bands for physical plastic heterogeneities considered as periodically distributed within grains. These intra-granular plastic heterogeneities are modeled by parallel flat ellipsoidal sub-domains, each of them may have a distinct uniform plastic slip. To capture the morphology of slip bands occurring in plastically deforming polycrystals, these interacting sub-domains are considered as oblate spheroids periodically distributed and constrained by spherical grain boundaries. In this paper, we focus the study on the influences of internal length scale parameters related to grain size, spatial period and thickness of slip bands on the overall material’s behavior. In a first part, the Gibbs free energy accounting for elastic interactions between plastic heterogeneities is calculated thanks to the Green function’s method in the case of an isolated spherical grain with plastic strain occurring only in slip bands embedded in an infinite elastic matrix. In a second part, the influence of discrete periodic distributions of intra-granular slip bands on the polycrystal’s behavior is investigated considering an aggregate with random crystallographic orientations. When the spatial period of slip bands is on the same order as the grain radius, the polycrystal’s mechanical behavior is found strongly dependent on the ratio between the spatial period of slip bands and the grain size, as well as the ratio between the slip band thickness and the grain size, which cannot be captured by classic length scale independent Eshelby-based micromechanics.  相似文献   

4.
The effect of grain shape, size distribution, intergranular friction, confinement, and initial compaction state on the high strain rate compressive mechanical response of sand is quantified using Long Split Hopkinson Pressure Bar (LSHPB) experiments, generating up to 1.1 ms long load pulses. This allowed the dynamic characterisation of different types of sand until full compaction (lowest initial void ratio) at different strain rates. The effect of the grain morphology and size on the dynamic compressive mechanical response of sand is assessed by conducting experiments on three types of sand: Ottawa Sand with quasi-spherical grains, Euroquartz Siligran with subangular grains and Q-Rok with polyhedral grain shape are considered in this study. The adoption of rigid (Ti64) and deformable (Latex) sand containers allowed for quasi-uniaxial strain and quasi-uniaxial stress conditions to be achieved respectively. Additionally, the effect of intergranular friction was studied, for the first time in literature, by employing polymer coated Euroquartz sand. Appropriate procedures for the preparation of samples at different representative initial consolidation states are utilized to achieve realistic range of naturally occurring formations of granular assembly from loose to dense state. The results identify material and confining sample state parameters which have significant effect on the mechanical response of sand at high strain rates and their interdependency for future integration into rate dependent constitutive models.  相似文献   

5.
Heterogeneous plastic deformation behavior of a coarse-grained Al-0.5%Mg multicrystal was investigated experimentally at the individual grain level. A flat uniaxial tensile specimen consisting of a single layer of millimeter-sized grains was deformed quasi-statically up to an axial strain of 15% at room temperature. The initial local crystallographic orientations of the grains and their evolutions after 5, 12, and 15% plastic strains were measured by electron backscattered diffraction pattern analysis in a scanning electron microscope. The local in-plane plastic strains and rigid body rotations of the grains were measured by correlation of digital optical video images of the specimen surface acquired during the tensile test. It is found that both intergranular and intragranular plastic deformation fields in the aluminum multicrystal specimen under uniaxial tension are highly heterogeneous. Single or double sets of slip-plane traces were predominantly observed on the electro-polished surfaces of the millimeter-sized grains after deformation. The active slip systems associated with these observed slip-plane traces were identified based on the grain orientation after deformation, the Schmid factor, and grain interactions in terms of the slip-plane trace morphology at grain boundaries. It is found that the aluminum multicrystal obeys neither the Sachs nor the Taylor polycrystal deformation models but deforms heterogeneously to favor easy slip transmission and accommodation among the grains.  相似文献   

6.
7.
A three-dimensional (3D) polycrystal intergranular model that accounts for grain boundary deformation and intergranular weakening at elevated temperatures is presented. The effects of grain boundaries on the accumulated slip deformation of grain interiors and lattice rotation have been investigated through a comparison between results from a model including grain boundary region (GBM) and a model representing only the grain interiors not the grain boundary region directly (NGBM). It is found that the presence of grain boundaries seems to suppress the grain interior slip deformation, and this suppressive role is reduced with increased relative thickness of the grain boundaries. In addition, grain boundaries promote the lattice rotation of individual grains in shear bands but suppress that of individual grains within non-shear bands. Mutual rotation of grains in both shear and non-shear bands is caused by the introduction of grain boundary regions. Rate-dependence of high-temperature plasticity could be more accurately captured by the GBM than by the NGBM. By considering creep damage of grain boundary, when the damage variable reaches a critical value, the corresponding grain boundary element is eliminated to describe dynamic intergranular fracture processes. The volume-averaged stress–strain curve by a model considering grain boundary damage (DGBM) showed better agreement with experimental results than that by a model not considering grain boundary damage (GBM).  相似文献   

8.
A model is presented for plastic deformation with grain subdivision into parallel bands. The experimental reference is the subdivision into “cell blocks” observed in rolled aluminium. The model maintains intragranular strain continuity between the bands with relaxed constraints. One version of the model maintains intergranular strain continuity by imposing identical strains in all grains. Another version does not provide formal fulfilment of intergranular strain continuity, but it tries to minimize strain discontinuity by selection of the appropriate physical solutions. Part I deals with the initial stage of grain subdivision at low strain. Part II (Leffers, T. 2001. A model for rolling deformation with grain subdivision. Part II: the subsequent stage. Int. J. Plasticity 17, 491–511.) deals with the subsequent stages at higher strains and the resulting rolling texture.  相似文献   

9.
为了推进超细晶D6A钢在半穿甲战斗部壳体上的应用,研究了动态加载下其宏观力学行为和细观变形机理。运用旋转盘式Hopkinson拉杆技术,开展了超细晶D6A低合金钢(平均晶粒尺寸为510 nm)的动态拉伸实验,获得了不同应变率(500~1000 s?1)下超细晶钢的应力-应变曲线。运用TEM观测微观形貌,从细观层次研究了高应变率拉伸作用下超细晶钢的动态力学特性。结果表明,超细晶D6A钢具有较高的动态拉伸强度和良好的延展性。并且,晶粒细化和纳米析出相(渗碳体)是超细晶钢同时拥有高强度和较好韧性的重要因素;在动态拉伸过程中析出的大量纳米级渗碳体,与高密度晶界共同作用限制了位错运动,从而产生额外的塑性变形抗力,有效提升了超细晶钢的强度;在塑性变形阶段超细晶钢出现的明显应力下降现象,是可动位错密度增高的结果。  相似文献   

10.
Generation of Granular Media   总被引:3,自引:0,他引:3  
A discrete reduced distance method to generate 2-D and 3-D granular porous media is presented. The main property of the method is to produce heterogeneous and/or anisotropic packed beds of joined grains with arbitrary shapes and optimum fitting (i.e., minimum porosity). The iterative generation process starts with the coarsest grain and adjusts the size and location of the next ones depending on the updated available space. Hence, grain size distribution cannot be specified directly but is merely the consequence of user defined input parameters. The latter consists of a set of randomly distributed initial points, a few typical predefined grain shapes as well as the minimum and maximum grain diameters. The simulated granular media can readily be processed by an appropriate mesh generator to allow for subsequent numerical solutions of differential equations.  相似文献   

11.
The morphological evolution of gravel grains under monotonic and cyclic loading, typically present in road structures, is presented. Two types of mineralogy are considered: a limestone and a sandstone. Loading in uniaxial strain conditions are applied, with a maximum mean pressure of 5 MPa and a maximum number of cycles of 250?000. Variations in grain size distribution and grain shape, measured with image analysis techniques, are discussed in detail. In the case of uniform grain size distribution, particle breakage does appear for stresses around 500 kPa for the limestone grains and 100 kPa for the sandstone grains. For well-graded materials under low cyclic pressures (<1 MPa), changes in grain size distribution can hardly be detected. To cite this article: F. Mayoraz et al., C. R. Mecanique 334 (2006).  相似文献   

12.
The purpose of this work was to characterize the spatial distribution of residual deformation at the mesoscale (a few grains) and at the macroscale (hundreds of grains) in titanium subjected to cyclic tensile loading. Using ex situ digital image correlation, we compared the axial residual strain fields obtained at optical magnifications ranging from 3.2× to 50×. To compare the results obtained at different optical magnifications, numerous images at higher magnification had to be assembled to encompass the same field-of-view observed at lower magnifications. The strain fields at the highest optical magnification revealed deformation patterns that were not detectable at lower magnifications. These deformation patterns appeared as inclined slip bands near grain boundaries and grain boundary triple points, with the bands sometimes crossing into neighboring grain interiors. Measurements made at optical magnifications greater than 10× captured an underlying deformation pattern, however, considerably more detail within grains was obtained at 50× magnification. The strain fields obtained at 10× and 50× magnifications were subsequently used to estimate the length scale of a representative volume element (RVE) based on the standard deviation of the average residual strain. The estimated RVE length scale was nearly three times the average grain diameter if extracted from the 50× results. The estimate of the RVE length scale was smaller at lower magnification which was due to a homogenizing effect caused by the low measurement resolution. Thus, care must be taken when experimentally obtaining RVE length scale estimates.  相似文献   

13.
A general ultrasonic attenuation model for a polycrystal with arbitrary macroscopic texture and triclinic ellipsoidal grains is described with proper accounting for the anisotropic Green’s function for the reference medium. The texture and the ellipsoidal grain frames in the model are independent and the wave propagation direction is arbitrary. The attenuation coefficients are obtained in the Born approximation accompanied by the Rayleigh and stochastic asymptotes. The scattering model displays statistical anisotropy due to two independent factors: (1) shape of the oriented grains and (2) preferred crystallographic orientation of the grains leading to macroscopic anisotropy of the homogenized reference medium. The model is applicable to most single phase polycrystalline materials that may occur as a result of thermomechanical manufacturing processes leading to different macrotextures and elongated-shaped grains. It predicts the strength of ultrasonic scattering and its dependence on frequency and propagation direction as a function of grain shape, grain crystallographic symmetry and macroscopic texture parameters and provides the texture-induced dependence of macroscopic ultrasonic velocity on propagation angle. It considers proper wave polarizations due to macroscopic anisotropy and scattering-induced transformations of waves with different polarizations. Competing effects of grain shape and texture on the attenuation are observed. In contrast to the macroscopically isotropic case, where in the stochastic regime the attenuation is highest in the direction of the longest ellipsoidal axis of the grain, the wave attenuation in the elongation direction may be suppressed or amplified by the texture with different effects on the quasilongitudinal and quasitransverse waves. The frequency behavior is also interestingly affected by texture: a hump in the total attenuation coefficient is found for the fast quasitransverse wave which is purely the result of macroscopic anisotropy and the existence of two quasitransverse waves; this hump is not observed in the macroscopically isotropic case. Striking differences of the texture effect on the directional dependences of the attenuation coefficients are found at low versus high frequencies.  相似文献   

14.
张涛  金鑫  陈蓉  朱明亮  郭素娟 《力学季刊》2022,43(3):502-511
对双相不锈钢开展拉伸和应力循环控制下的原位试验研究,选择特征区域对其局部微变形行为的产生、分布和演化进行了研究和讨论.结果表明:双相不锈钢在较低的载荷作用下内部出现明显的应变梯度,随着拉伸载荷或循环周次的增长,其局部微应变不断增加,最大应变在奥氏体相、小晶粒、狭窄晶粒和不平整的晶界区不断汇集,同一时刻的局部最大微应变远大于宏观应变;循环载荷作用下双相不锈钢在微观尺度产生了局部微棘轮变形效应,微棘轮应变随着循环周次的增加不断累积,其增长速度逐渐降低并趋于饱和;随着循环周次的增加,最大微棘轮变形区逐渐扩展、联通形成大塑性变形带,晶粒走向呈45°方向时,变形带贯穿两相向垂直加载方向发展,而晶粒呈树根状走向时,由于受到两相交互和铁素体的阻碍作用,微棘轮变形带主要集中在奥氏体中沿着奥氏体晶粒走向发展.  相似文献   

15.
The propagation of stress waves through a chain of discs has been studied experimentally in Part I (Glam et al. [1]) and is completed here with numerical investigation using the standard package ABAQUS. A fair agreement is found between experimental findings and their simulations. Based on this agreement, parametric study of wave propagation through disc-chains was conducted. Specifically, effects associated with changes in the disc diameter, material density, stiffness/rigidity and the number of discs in the chain on the stressed chain have been studied. It was found that the propagation velocity of the evolved waves increases with improving contacts between the chain’s discs by exposing the chain to a static load before its dynamic loading. The wave- propagation velocity decreases with increase in the discs material density and it increases when its diameter increases. In case of a chain composed of small diameter discs and/or small material density, the transmitted stress wave is first strengthened and only at discs further down the chain it starts decaying. When checking the influence of the dynamic-loading duration it was found that long dynamic-load duration dissolves quickly into short pulses. It was also found that there is a ‘characteristic’ wave for a given chain. This wave propagates with minimal dispersion. Dynamic loads having shorter time duration than the ‘characteristic’ one experiences significant attenuation.  相似文献   

16.
In order to improve the mechanical properties of twinning-induced plasticity steel, the grain morphology was tailored by different solidification technologies combined with deformation and heat treatment processing routes. Three typical grain morphologies, i.e., equiaxed, columnar as well as equiaxed/columnar grains were formed, and their mechanical behaviors were comparatively studied. Among the three materials, the equiaxed grain material exhibited the highest strength but the lowest plasticity. Depending on the grain size, the smaller the grain size, the higher the strength, but the lower the elongation. The columnar grain material possessed the most excellent plasticity but the weakest strength.These properties presented a non-monotonic dependence on the dendrite spacing, and the moderate spacing resulted in the optimum combination of strength and plasticity. The equiaxed/columnar grain coexisted material showed interesting properties, i.e., the strength and plasticity were just between those of single grain-shaped materials. The three materials also presented different strain hardening behaviors particularly in the uniform deformation stage. The equiaxed grain material showed a constant strain hardening rate, while the columnar grain and equiaxed/columnar grain materials showed a progressively increasing rate with increasing the true strain.  相似文献   

17.
方亮  高义民 《摩擦学学报》1995,15(4):348-354
根据Fourier级数的频域分析方法,并且运用快速Fourier变换的算法,在IBM-PC机上通过自编程序进行了不同磨粒几何外形参数的数值计算,利用这种计算方法,可以获得磨粒尖锐度、粗糙度和轮廓的角形特征等信息,是对不同磨粒外部几何形状进行比较判别的一种有效方法。  相似文献   

18.
Liesegang patterns of parallel precipitate bands are obtained when solutions containing co-precipitate ions interdiffuse in a 1D gel matrix.The sparingly soluble salt formed,displays a beautiful stratification of discs of precipitate perpendicular to the 1D tube axis.The Liesegang structures are analyzed from the viewpoint of their fractal nature.Geometric Liesegang patterns are constructed in conformity with the well-known empirical laws such as the time,band spacing and band width laws.The dependence of the band spacing on the initial concentrations of diffusing(outer)and immobile(inner)electrolytes(A0 and B0,respectively)is taken to follow the Matalon-Packter law.Both mathematical fractal dimensions and box-count dimensions are calculated.The fractal dimension is found to increase with increasing A0 and decreasing B0.We also analyze mosaic patterns with random distribution of crystallites,grown under different conditions than the classical Liesegang gel method,and report on their fractal properties.Finally,complex Liesegang patterns wherein the bands are grouped in multiplets are studied,and it is shown that the fractal nature increases with the multiplicity.  相似文献   

19.
In many multibody system applications, the system components are made of structural elements that can have different orientations, leading to slope discontinuities. In this paper, a numerical investigation of a new procedure that can be used to model structures with slope discontinuities in the finite element absolute nodal coordinate formulation (ANCF) is presented. This procedure can be applied to model slope discontinuities in the case of commutative rotations of gradient deficient elements that are used for modeling thin beam and plate structures. An important special case to which the proposed procedure can be applied is the case of all planar gradient deficient ANCF finite elements. The use of the proposed method leads to a constant orthogonal element transformation that describes an arbitrary initial configuration. As a consequence, one obtains, in the case of large commutative rotations and large deformations, a constant mass matrix for structures which have complex geometry. The procedure used in this investigation to model slope discontinuities requires the use of the concept of the intermediate finite element coordinate system. For each finite element, a new set of gradient coordinates that define, at the discontinuity node, the element deformation with respect to the intermediate element coordinate system is introduced. These new gradient coordinates are assumed to be equal for the two finite elements at the point of intersection. That is, the change of the gradients of two elements at the intersection point from their respective intermediate initial reference configuration is assumed to be the same. This procedure leads to a set of linear algebraic equations that define the orthogonal transformation matrix for the finite element. Numerical examples are presented in order to demonstrate the use of the proposed procedure for modeling slope discontinuities.  相似文献   

20.
The elongation of a ferroelastic material sample (whose initial shape is a sphere or an ellipsoid of revolution) under the action of an external magnetic field is studied in an in approximation of small strains. For a sphere, there is a classical estimate obtained under the assumption that elongating in the direction of the field, it becomes a spheroid and the stress and strain fields remain uniform. In the present calculation, it is assumed that the body is an ellipsoid (a sphere in a particular case) only in the absence of an external field; the shape of the sample in the presence of a field is not specified in advance but is found from the condition of balance of surface forces (elastic and magnetic). For the spherical case, the problem is solved exactly: it is shown, that the contour of the deformed body is described by a third-order algebraic equation. The case where the initial configuration is an ellipsoid of revolution is studied numerically. It is shown that in all versions, the refined solution leads to an appreciable increase in the elongation of the sample compared to the classical estimate. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 153–164, May–June, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号